You limited your search to:

 Serial/Series Title: NACA Special Report
 Collection: National Advisory Committee for Aeronautics Collection
Comparison of Intercooler Characteristics

Comparison of Intercooler Characteristics

Date: May 1, 1941
Creator: Reuter, J. George & Valerino, Michael F.
Description: A method is presented of comparing the performance, weight, and general dimensional characteristics of inter-coolers. The performance and dimensional characteristics covered in the comparisons are cooling effectiveness, pressure drops and weight flows of the charge and cooling air, power losses, volume, frontal area, and width. A method of presenting intercooler data is described in which two types of charts are plotted; (1) A performance chart setting forth all the important characteristics of a given intercooler and (2) a replot of these characteristics for a number of intercoolers intended to assist in making a selection to satisfy a given set of installation conditions. The characteristics of commercial intercoolers obtained from manufacturers' data and of some computed designs are presented on this basis. A standard test procedure and instrumentation are suggested whereby comparable data may be obtained by different testing organizations.
Contributing Partner: UNT Libraries Government Documents Department
Compressibility Effects in Aeronautical Engineering

Compressibility Effects in Aeronautical Engineering

Date: August 1, 1941
Creator: Stack, John
Description: Compressible-flow research, while a relatively new field in aeronautics, is very old, dating back almost to the development of the first firearm. Over the last hundred years, researches have been conducted in the ballistics field, but these results have been of practically no use in aeronautical engineering because the phenomena that have been studied have been the more or less steady supersonic condition of flow. Some work that has been done in connection with steam turbines, particularly nozzle studies, has been of value, In general, however, understanding of compressible-flow phenomena has been very incomplete and permitted no real basis for the solution of aeronautical engineering problems in which.the flow is likely to be unsteady because regions of both subsonic and supersonic speeds may occur. In the early phases of the development of the airplane, speeds were so low that the effects of compressibility could be justifiably ignored. During the last war and immediately after, however, propellers exhibited losses in efficiency as the tip speeds approached the speed of sound, and the first experiments of an aeronautical nature were therefore conducted with propellers. Results of these experiments indicated serious losses of efficiency, but aeronautical engineers were not seriously concerned at the ...
Contributing Partner: UNT Libraries Government Documents Department
Engine Operation in Flight for Minimum Fuel Consumption

Engine Operation in Flight for Minimum Fuel Consumption

Date: November 1, 1939
Creator: Reuter, George
Description: Engine and airplane performance data have been gathered from various sources and analyzed to determine indications of the most economical methods of flight operation from a consideration of fuel expenditure. The analysis includes the influence of such facts as fuel-air ratio, engine speed, engine knock, altitude, cylinder cooling, spark timing, and limits of cruising brake mean effective pressure. The results indicate that the cheapest power is obtained with approximately correct mixture at low engine speed and highest permissible manifold pressure. If more power is desired, the methods of obtaining it are, in order of fuel economy: (a) increasing the engine speed and maintaining safe cylinder temperatures by cooling; (b) retarding the spark or cooling further to permit higher manifold pressure; and, (c) riching the mixture. The analysis further shows that the maximum time endurance of flight occurs at the air speed corresponding to minimum thrust horsepower required and with minimum practicable engine speed. Maximum mileage per pound of fuel is obtained at slightly higher air speed. The fuel-air ratio should be approximately the theoretically correct ratio in both cases. For an engine equipped with a geared supercharger, as in the example presented, and with knock as the limiting condition, a ...
Contributing Partner: UNT Libraries Government Documents Department
Experiments on the Recovery of Waste Heat in Cooling Ducts, Special Report

Experiments on the Recovery of Waste Heat in Cooling Ducts, Special Report

Date: May 1, 1939
Creator: Silverstein, Abe
Description: Tests have been conducted in the N.A.C.A. full-scale wind tunnel to investigate the partial recovery of the heat energy which is apparently wasted in the cooling of aircraft engines. The results indicate that if the radiator is located in an expanded duct, a part of the energy lost in cooling is recovered; however, the energy recovery is not of practical importance up to airplane speeds of 400 miles per hour. Throttling of the duct flow occurs with heated radiators and must be considered in designing the duct outlets from data obtained with cold radiators in the ducts.
Contributing Partner: UNT Libraries Government Documents Department
Investigation of an Electrically Heated Airplane Windshield for Ice Prevention, Special Report

Investigation of an Electrically Heated Airplane Windshield for Ice Prevention, Special Report

Date: March 1, 1939
Creator: Rodert, Lewis A.
Description: A study was made at the National Advisory Committee for Aeronautics Laboratory of the operation of an electrically heated glass panel, which simulated a segment of an airplane windshield, to determine if ice formations, which usually result in the loss of visibility, could be prevented. Tests were made in the 7- by 3-foot ice tunnel, and in flight, under artificially created ice-forming conditions. Ice was prevented from forming on the windshield model in the tunnel by 1.25 watts of power per square inch with the air temperature at 23 F and a velocity of 80 miles per hour. Using an improved model in flight, ice was prevented by 1.43 watts of power per square inch of protected area and 2 watts per inch concentrated in the rim, with the air temperature at 26 F and a velocity of 120 miles per hour. The removal of a preformed ice cap was effected to a limited extent in the tunnel by the use of 1.89 watts of power per square inch when the temperature and velocity were 25 F and 80 miles per hour, respectively. The results indicate that service tests with an improved design are justified.
Contributing Partner: UNT Libraries Government Documents Department
Large-Scale Boundary-Layer Control Tests on Two Wings in the NACA 20-Foot Wind Tunnel, Special Report

Large-Scale Boundary-Layer Control Tests on Two Wings in the NACA 20-Foot Wind Tunnel, Special Report

Date: April 1, 1935
Creator: Freeman, Hugh B.
Description: Tests were made in the N.A.C.A. 20-foot wind tunnel on: (1) a wing, of 6.5-foot span, 5.5-foot chord, and 30 percent maximum thickness, fitted with large end plates and (2) a 16-foot span 2.67-foot chord wing of 15 percent maximum thickness to determine the increase in lift obtainable by removing the boundary layer and the power required for the blower. The results of the tests on the stub wing appeared more favorable than previous small-scale tests and indicated that: (1) the suction method was considerably superior to the pressure method, (2) single slots were more effective than multiple slots (where the same pressure was applied to all slots), the slot efficiency increased rapidly for increasing slot widths up to 2 percent of the wing chord and remained practically constant for all larger widths tested, (3) suction pressure and power requirements were quite low (a computation for a light airplane showed that a lift coefficient of 3.0 could be obtained with a suction as low as 2.3 times the dynamic pressure and a power expenditure less than 3 percent of the rated engine power), and (4) the volume of air required to be drawn off was quite high (approximately 0.5 cubic ...
Contributing Partner: UNT Libraries Government Documents Department
Tests of Airfoils Designed to Delay the Compressibility Burble

Tests of Airfoils Designed to Delay the Compressibility Burble

Date: June 1, 1939
Creator: Stack, John
Description: Development of airfoil sections suitable for high-speed applications has generally been difficult because little was known of the flow phenomenon that occurs at high speeds. A definite critical speed has been found at which serious detrimental flow changes occur that lead to serious losses in lift and large increases in drag. This flow phenomenon, called the compressibility burble, was originally a propeller problem, but with the development of higher speed aircraft serious consideration must be given to other parts of the airplane. Fundamental investigations of high-speed airflow phenomenon have provided new information. An important conclusion of this work has been the determination of the critical speed, that is, the speed at which the compressibility burble occurs. The critical speed was shown to be the translational velocity at which the sum of the translational velocity and the maximum local induced velocity at the surface of the airfoil or other body equals the local speed of sound. Obviously then higher critical speeds can be attained through the development of airfoils that have minimum induced velocity for any given value of the lift coefficient. Presumably, the highest critical speed will be attained by an airfoil that has uniform chordwise distribution of induced velocity ...
Contributing Partner: UNT Libraries Government Documents Department
Wind-Tunnel Investigation of an NACA Low-Drag Tapered Wing with Straight Trailing Edge and Simple Split Flaps, Special Report

Wind-Tunnel Investigation of an NACA Low-Drag Tapered Wing with Straight Trailing Edge and Simple Split Flaps, Special Report

Date: December 1, 1941
Creator: Muse, Thomas C. & Neely, Robert H.
Description: An investigation was conducted in the NACA 19-foot pressure wind tunnel of a tapered wing with straight railing edge having NACA 66 series low-drag airfoil sections and equipped with full-span and partial-span simple split flaps. The airfoil sections used were the NACA 66,2-116 at the root and the 66,2-216 at the tip. The primary purpose of the investigation was to determine the effect of the split flaps on the aerodynamic characteristics of the tapered wing. Complete lift, drag, and pitching-moment coefficients were determined for the plain wing and for each flap arrangement through a Reynold number range of 2,600,000 to 4,600,000. The results of this investigation indicate that values of maximum lift coefficient comparable to values obtained on tapered wings with conventional sections and similar flap installations can be obtained from wings with the NACA low-drag sections. The increment of maximum lift due to the split flap was found to vary somewhat with Reynold number over the range investigated. The C(sub L)max of the wing alone is 1.49 at a Reynolds number of 4,600,000; whereas with the partial-span simple split flap it is 2.22 and with the full-span arrangement, 2.80. Observations of wool tufts on the wing indicate that the ...
Contributing Partner: UNT Libraries Government Documents Department
Wind-Tunnel Investigation of Air Inlet and Outlet Openings for Aircraft, Special Report

Wind-Tunnel Investigation of Air Inlet and Outlet Openings for Aircraft, Special Report

Date: October 1, 1938
Creator: Rogallo, Francis M. & Gauvain, William E.
Description: An investigation was made in the NACA 5-foot vertical wind tunnel of a large variety of duct inlets and outlets to obtain information relative to their design for the cooling or the ventilation systems on aircraft. Most of the tests were of openings in a flat plate but, in order to determine the best locations and the effects of interference, a few tests were made of openings in an airfoil. The best inlet location for a system not including a blower was found to be at the forward stagnation point; for one including a blower, the best location was found to be in the region of lowest total head, probably in the boundary layer near the trailing edge. Design recommendations are given, and it is shown that correct design demands a knowledge of the external flow and of the internal requirements in addition to that obtained from the results of the wind tunnel tests.
Contributing Partner: UNT Libraries Government Documents Department
Wind-Tunnel Investigation of an NACA 66,2-216 Low-Drag Wing with Split Flaps of Various Sizes, Special Report

Wind-Tunnel Investigation of an NACA 66,2-216 Low-Drag Wing with Split Flaps of Various Sizes, Special Report

Date: September 1, 1941
Creator: Muse, Thomas C. & Neely, Robert H.
Description: An investigation was conducted in the NACA 19-foot pressure wind tunnel of a rectangular wing having NACA 66, 2-216 low-drag airfoil sections and various sizes of simple split flaps. The purpose of the investigation was, primarily, to determine the influence of these flap installations on the aerodynamic characteristics of the wing. Complete lift, drag, and pitching-moment characteristics were determined for a range of test Reynolds numbers from about 2,600,000 to 4,600,000 for each of the installations and for the plain wing. The results of this investigation indicate that values of maximum lift coefficient similar to those of wings with conventional airfoil sections and split flaps can be expected of wings having the NACA 66,2-216 low-drag sections. The increment of maximum lift due to the split flap was found to be practically independent of the Reynolds number over the range investigated. The optimum split flap on the basis of maximum lift appears to have a chord about 20% of the wing chord and a deflection of 60 degrees. The C(sub L) max of the wing with the 0.20c partial-span flap deflected 60 degrees is 2.07 at a Reynolds number of 4,600,000 while with the full-span flap it is approximately 2.53; the ...
Contributing Partner: UNT Libraries Government Documents Department