You limited your search to:

 Serial/Series Title: NACA Special Report
 Collection: National Advisory Committee for Aeronautics Collection
The Torsional and Bending Deflection of Full-Scale Duralumin Propeller Blades under Normal Operating Conditions, Special Report

The Torsional and Bending Deflection of Full-Scale Duralumin Propeller Blades under Normal Operating Conditions, Special Report

Date: March 1, 1938
Creator: Hartman, Edwin P. & Biermann, David
Description: The torsional deflection of the blades of three full-scale duralumin propellers operating under various loading conditions was measured by a light-beam method. Angular bending deflections were also obtained as an incidental part of the study. The deflection measurements showed that the usual present-day type of propeller blades twisted but a negligible amount under ordinary flight conditions. A maximum deflection of about 1/10th of a degree was found at V/nD of 0.3 and a smaller deflection at higher values of V/nD for the station at 0.70 radius. These deflections are much smaller than would be expected from earlier tests, but the light-beam method is considered to be much more accurate than the direct-reading transit method used in the previous tests.
Contributing Partner: UNT Libraries Government Documents Department
N.A.C.A. Stall-Warning Device

N.A.C.A. Stall-Warning Device

Date: February 1, 1938
Creator: Thompson, F.L.
Description: With some airplanes the approach to the stall is accompanied by changes in the behavior, such as tail buffeting or changes in the control characteristics of the airplane so that the pilot obtains a warning of the impending stall. Vith other airplanes it is possible to approach the stall without any perceptible warning other than the reading of the air-speed meter, in which case the danger of inadvertent stalling is considerably greater. Although it is not within the scope of this paper to discuss stalling characteristics, it is desired to point out that in general the danger of inadvertent stalling is greatest with those airplanes that behave worse when the stalling occurs; that is, with airplanes in which the stall starts at the wing tips. A warning of the impending stall is desirable in any case, but is particularly desirable with airplanes of the latter type.
Contributing Partner: UNT Libraries Government Documents Department
Resume of Present Data on Load Distribution on Slots and Flaps, Special Report

Resume of Present Data on Load Distribution on Slots and Flaps, Special Report

Date: April 1, 1934
Creator: Wenzinger, Carl J.
Description: This report covers a study of the generally available data on load distribution on slots and flaps. The study was made by the National Advisory Committee for Aeronautics at the request of the Material Division, Army Air Corps to furnish information applicable to design criteria for slots and flaps of various types. The data are presented in three main sections: slots (Handley page type), auxiliary airfoils (fixed), and flaps.
Contributing Partner: UNT Libraries Government Documents Department
Tests of Airfoils Designed to Delay the Compressibility Burble

Tests of Airfoils Designed to Delay the Compressibility Burble

Date: June 1, 1939
Creator: Stack, John
Description: Development of airfoil sections suitable for high-speed applications has generally been difficult because little was known of the flow phenomenon that occurs at high speeds. A definite critical speed has been found at which serious detrimental flow changes occur that lead to serious losses in lift and large increases in drag. This flow phenomenon, called the compressibility burble, was originally a propeller problem, but with the development of higher speed aircraft serious consideration must be given to other parts of the airplane. Fundamental investigations of high-speed airflow phenomenon have provided new information. An important conclusion of this work has been the determination of the critical speed, that is, the speed at which the compressibility burble occurs. The critical speed was shown to be the translational velocity at which the sum of the translational velocity and the maximum local induced velocity at the surface of the airfoil or other body equals the local speed of sound. Obviously then higher critical speeds can be attained through the development of airfoils that have minimum induced velocity for any given value of the lift coefficient. Presumably, the highest critical speed will be attained by an airfoil that has uniform chordwise distribution of induced velocity ...
Contributing Partner: UNT Libraries Government Documents Department
Wind-Tunnel Investigation of the Lift Characteristics of an NACA 27-212 Airfoil Equipped with Two Types of Flap, Special Report

Wind-Tunnel Investigation of the Lift Characteristics of an NACA 27-212 Airfoil Equipped with Two Types of Flap, Special Report

Date: September 1, 1940
Creator: Swanson, Robert S. & Schuldenfrei, Marvin J.
Description: An investigation has been made in the NACA 7- by 10-foot wind tunnel of a large chord NACA 27-212 airfoil with a 20% chord split flap and with two arrangements of a 25.66% chord slotted flap to determine the section lift characteristics as affected by flap deflection for the split flap and as affected by flap deflection, flap position, and slot shape for the slotted flap. For the two arrangements of the slotted flap, the flap positions for maximum section lift are given. Comparable data on the NACA 23012 airfoil equipped with similar flaps are also given. On the basis of maximum section lift coefficient, the slotted flap with an easy slot entry was slightly better than either the split flap or the slotted flap with a sharp slot entry. With both types of flap the decrease in the angle of attack, for maximum section lift coefficient, with flap deflection is large for the NACA 27-212 airfoil as compared with the NACA 23012 airfoil. Also with both flaps, the maximum section lift coefficient obtained with flaps is much lower for the NACA 27-212 airfoil than for the NACA 23012 airfoil.
Contributing Partner: UNT Libraries Government Documents Department
The Effect of Streamlining the Afterbody of an N.A.C.A. Cowling

The Effect of Streamlining the Afterbody of an N.A.C.A. Cowling

Date: December 1, 1939
Creator: Stickle, George W.; Crigler, John L. & Naiman, Irven
Description: The drag and the power cost associated with the changing of the nose of a nacelle from a streamline shape to a conventional N.A.C.A. cowling shape was investigated in the N.A.C.A. 20-foot tunnel. Full-scale propellers and nacelles were used. The increment of drag associated with the change of nose shapes was found to be critically dependent on the afterbody of the nacelle. Two streamline afterbodies were tested. The results fo the tests with the more streamlined afterbody showed that the added drag due to the open-nose cowling was only one-fourth of the drag increase obtained with the other afterbody. The results of this research indicate that the power cost, in excess of that with a streamline nose, of using an N.A.C.A. cowling in front of a well-designed afterbody to enclose a 1,500-horsepower engine in an airplane with a speed of 300 miles per hour amounts to 1.5 percent of the engine power. If the open-nose cowling is credited with 1 percent because it cools the front of the cylinders, the non-useful power cost amounts to only 0.5 percent of the engine power.
Contributing Partner: UNT Libraries Government Documents Department
Profile-Drag Investigation of an Airplane Wing Equipped with Rubber Inflatable De-Icer

Profile-Drag Investigation of an Airplane Wing Equipped with Rubber Inflatable De-Icer

Date: December 1, 1939
Creator: Rodert, Lewis A. & Jones, Alun R.
Description: The National Advisory Committee for Aeronautics has made profile-drag measurements in flight of a wing which was equipped with a rubber inflatable de-icer and to which various stimulated ice formations were attached. Tuft observations at the stalling speed of the wing with the various drag conditions were made in order to determine the influence on the maximum lift coefficient. The de-icer installation caused an increase of from 10-20% in the profile drag of the plain wing and reduced CL(sub max) about 6%. Simulated ice, when confined to the leading-edge region of the de-icer, had no measurable influence upon the profile drag at the cruising speed. This ice condition, however, reduced the value of CL(sub max) to about three-fourths that of the plain wing. Simulated ice in the form of a ridge along the upper and lower de-icer cap-strips increased the profile drag by about 360% at cruising speed. This condition reduced the CL(sub max) to approximately one-half that of the plain wing value.
Contributing Partner: UNT Libraries Government Documents Department
The Calculated Effect of Various Hydrodynamic and Aerodynamic Factors on the Take-Off of a Large Flying Boat

The Calculated Effect of Various Hydrodynamic and Aerodynamic Factors on the Take-Off of a Large Flying Boat

Date: June 1, 1939
Creator: Olson, R.E. & Allison, J.M.
Description: Present designs for large flying boats are characterized by high wing loading, high aspect ratio, and low parasite drag. The high wing loading results in the universal use of flaps for reducing the takeoff and landing speeds. These factors have an effect on takeoff performance and influence to a certain extent the design of the hull. An investigation was made of the influence of various factors and design parameters on the takeoff performance of a hypothetical large flying boat by means of takeoff calculations. The parameters varied in the calculations were size of hull (load coefficient), wing setting, trim, deflection of flap, wing loading, aspect ratio, and parasite drag. The takeoff times and distances were calculated to the stalling speeds and the performance above these speeds was studied separately to determine piloting technique for optimum takeoff. The advantage of quick deflection of the flap at high water speeds is shown.
Contributing Partner: UNT Libraries Government Documents Department
Wing-Nacelle-Propeller Tests - Comparative Tests of Liquid-Cooled and Air-Cooled Engine Nacelles

Wing-Nacelle-Propeller Tests - Comparative Tests of Liquid-Cooled and Air-Cooled Engine Nacelles

Date: January 1, 1934
Creator: Wood, Donald H.
Description: This report gives the results of measurements of the lift, drag, and propeller characteristics of several wing and nacelle combinations with a tractor propeller. The nacelles were so located that the propeller was about 31% of the wing chord directly ahead of the leading edge of the wing, a position which earlier tests (NASA Report No. 415) had shown to be efficient. The nacelles were scale models of an NACA cowled nacelle for a radial air-cooled engine, a circular nacelle with the V-type engine located inside and the radiator for the cooling liquid located inside and the radiator for the type, and a nacelle shape simulating the housing which would be used for an extension shaft if the engine were located entirely within the wing. The propeller used in all cases was a 4-foot model of Navy No. 4412 adjustable metal propeller. The results of the tests indicate that, at the angles of attack corresponding to high speeds of flight, there is no marked advantage of one type of nacelle over the others as far as low drag is concerned, since the drag added by any of the nacelles in the particular location ahead of the wing is very small. ...
Contributing Partner: UNT Libraries Government Documents Department
Full-Scale Wind-Tunnel Investigation of Wing Cooling Ducts, Special Report

Full-Scale Wind-Tunnel Investigation of Wing Cooling Ducts, Special Report

Date: October 1, 1938
Creator: Nickle, F. R. & Freeman, Arthur B.
Description: The systematic investigation of wing cooling ducts at the NACA laboratory has been continued with tests in the full-scale wind tunnel on ducts of finite span. These results extend the previous investigation on section characteristics of ducts to higher Reynolds numbers and indicate the losses due to the duct ends. The data include comparisons between ducts completely within the ring and the conventional underslung ducts. Methods of flow regulation were studied and data were obtained for a wide range of internal duct resistance. The results show satisfactory correlation between the finite span and the previously measured section characteristics obtained with full-span ducts. The effects of the various design parameters on the duct characteristics are discussed. The cooling power required for the internal duct installation is shown to be only a small percentage of the engine power.
Contributing Partner: UNT Libraries Government Documents Department