Search Results

Aerodynamic Characteristics of Airfoils 3: Continuation of Reports Nos. 93 and 124
"This collection of data on airfoils has been made from the published reports of a number of the leading aerodynamic laboratories of this country and Europe. The information which was originally expressed according to the different customs of the several laboratories is here presented in a uniform series of charts and tables suitable for the use of designing engineers and for purposes of general reference. The absolute system of coefficients has been used, since it is thought by the National Advisory Committee for Aeronautics that this is the one most suited for international use and yet is one for which a desired transformation can be easily made" (p. 397).
The Aerodynamic Forces on Airship Hulls
"This report describes the new method for making computations in connection with the study of rigid airship, which was used in the investigation of the navy's ZR-1 by the special subcommittee of the National Advisory Committee for Aeronautics appointed for this purpose. It presents the general theory of the air forces on airship hulls of the type mentioned, and an attempt has been made to develop the results from the very fundamentals of mechanics without reference to some of the modern highly developed conceptions, which may not yet be thoroughly known to readers uninitiated into modern aerodynamics, and which may, perhaps, for all time remain restricted to a small number of specialists" (p. 5).
The Aerodynamic Laboratory of the Belgian "Service Technique De L'Aeronautique"
This report provides a description of the wind tunnel housing and motors at the Belgian Service Technique de L'Aeronautique.
The aerodynamic plane table
This report gives the description and the use of a specially designed aerodynamic plane table.
Aeronautic Instruments
"The development of aeronautic instruments. Vibrations, rapid changes of the conditions of flight and of atmospheric conditions, influence of the air stream all call for particular design and construction of the individual instruments. This is shown by certain examples of individual instruments and of various classes of instruments for measuring pressure, change of altitude, temperature, velocity, inclination and turning or combinations of these" (p. 1).
Air-Flow Experiments
This report describes the apparatus used to take air-flow photographs. The photographs show chiefly the spiral course of the lines of flow near the tip of the wing. They constitute therefore a visual presentation of the phenomena covered by airfoil theory.
Air Forces Exerted on Streamlined Bodies with Round or Square Cross- Sections, When Placed Obliquely to the Airstream
"The question of behavior of a streamlined body with round or square cross-sections is of importance in determining the shape to give an airplane fuselage. It is our task here to show how the lift and drag are affected, with the object placed obliquely to the air stream" (p. 1).
Air Transport
Report presenting the development in air transport that has taken place since civil aviation between England and Europe started at the end of August 1919. The primary subjects explored include the character of loads on aircraft, routes operated, results in passengers carried and efficiency of the service, costs of the service, question of subsidies, and probable future developments.
Airplanes in horizontal curvilinear flight
The report discussing single and two-seater airplanes as well as larger airplanes.
An airship slide rule
From Introduction: "This report prepared for the National Advisory Committee for Aeronautics, describes an airship slide rule developed by the Gas-Chemistry Section of the Bureau of Standards, at the request of the Bureau of Engineering of the Navy Department."
The American Airship ZR-3
This airship was built by the Zeppelin Airship Company at Friedrichshafen in 1923-4, for the United States Navy, as the reparations service of the German Government in fulfillment of the treaty of peace. A description of the design, components, flight characteristics, blueprints, and photographs are provided.
The analysis of free flight propeller tests and its application to design
This report contains a description of a new and useful method suitable for the design of propellers and for the interpretation of tests with propellers.
Analysis of W. F. Durand's and E. P. Lesley's propeller tests
This report is a critical study of the results of propeller model tests with the view of obtaining a clear insight into the mechanism of the propeller action and of examining the soundness of the physical explanation generally given.
Annual Report of the National Advisory Committee for Aeronautics (9th). Administrative Report Including Technical Reports Nos. 159 to 185
Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, and expenditures.
Aviation Engines in the Endurance Contest
The contest for engines of great endurance had entries of 13 types by the following firms: Breguet, Farman, Fiat, Hispano-Suiza, Lorraine-Dietrich, Panhard-Levassor, Peugeot, Renault, and Salmson.
Balloon Flight and Atmospheric Electricity
"The air is known to be charged with electricity (chiefly positive) with reference to the earth, so that its potential increases with the altitude and the difference in potential between two points in the same vertical line, divided by the distance between them, gives a value called the "potential gradient," which may vary greatly with the altitude, the nature of the ground and the atmospheric conditions" (p. 1).
Calculation of the hull and of the car-suspension systems of airships
Differential and integral curves are presented and well as numerous calculations relating to hulls. Some of the calculations include those relating to hulls, those relating to the invariability of the shape of the hulls, and those relating to the suspension of the hull.
The Cathode Oscillograph for the Study of Low, Medium, and High Frequencies
The object of this work has been to construct an apparatus for obtaining oscillogram of voltages and currents which are variable with respect to time and of the frequency which is constantly met in radio.
Combustion of Liquid Fuels in Diesel Engine
Hitherto, definite specifications have always been made for fuel oils and they have been classified as more or less good or non-utilizable. The present aim, however, is to build Diesel engines capable of using even the poorest liquid fuels and especially the waste products of the oil industry, without special chemical or physical preparation.
Comparing the Performance of Geometrically Similar Airplanes
"This note has been prepared for the National Advisory Committee for Aeronautics. It deals with the model rules relating to aeronautical problems, and shows how the characteristics of one airplane can be determined from those of another airplane of different weight or size, and of similar type. If certain rules for the ratios of the dimensions, the weights and the horsepower are followed, a small low-powered airplane can be used for obtaining information as to performance, stability, controllability and maneuverability of a larger prototype, and contrariwise" (p. 1).
Complete Study of Longitudinal Oscillation of a VE-7 Airplane
"This investigation was carried out by the National Advisory Committee for Aeronautics at Langley Field in order to study as closely as possible the behavior of an airplane when it was making a longitudinal oscillation. The airspeed, the altitude, the angle with the horizon and the angle of attack were all recorded simultaneously and the resulting curves plotted to the same time scale. The results show that all the curves are very close to damped sine curves, with the curves for height and angle of attack in phase, that for angle with the horizon leading them by 18 per cent and that for path angle leading them by 25 per cent" (p. 129).
Curvilinear Flight of Airplanes
Note presenting an investigation of curvilinear flight, which is defined as steady horizontal flight in a circle in which no side slip occurs. The investigation occurred under very specific circumstances and rests on two basic assumptions, which are that the airplane lies correctly in the turn so the resultant of gravity and centrifugal force falls in the plane of symmetry and that the airplane must lie in the turn so that the axis coincides with the direction of motion.
Development of Wing-Steered Messerschmitt Gliders
The present article is a brief report on the development and testing of the Messerschmidt glider that set a duration record of 21 minutes. Its most conspicuous characteristic was the placing of the steering gear entirely inside the fuselage and wings.
Device for Measuring Sound in Airplane Engines
Memorandum describing a device, constructed according to the system of Gati, with which it is possible to measure the sound of an engine and test the effect of a silencer.
The Distribution of Lift Over Wing Tips and Ailerons
"This investigation was carried out in the 5-foot wind tunnel of the Langley Memorial Aeronautical Laboratory for the purpose of obtaining more complete information on the distribution of lift between the ends of wing spars, the stresses in ailerons, and the general subject of airflow near the tip of a wing. It includes one series of tests on four models without ailerons, having square, elliptical, and raked tips respectively, and a second series of positively and negatively raked wings with ailerons adjusted to different settings. The results show that negatively raked tips give a more uniform distribution of air pressure than any of the other three arrangements, because the tip vortex does not disturb the flow at the trailing edge" (p. 105).
Duralumin, Its Properties and Uses
A historical sketch of duralumin is presented, especially in regards to its manufacture by various countries. The properties of duralumin are discussed and strength characteristics listed. Increasing the hardness of duralumin by tempering is discussed as well as the uses of the metal.
Dynamic Stability as Affected by the Longitudinal Moment of Inertia
"In a recent Technical Note (NACA-TN-115, October, 1922), Norton and Carrol have reported experiments showing that a relatively large (15 per cent) increase in longitudinal moment of inertia made no noticeable difference in the stability of a standard SE-5A airplane. They point out that G. P. Thomson, "Applied Aeronautics," page 208, stated that an increase in longitudinal moment of inertia would decrease the stability. Neither he nor they make any theoretical forecast of the amount of decrease. Although it is difficult, on account of the complications of the theory of stability of the airplane, to make any accurate forecast, it is the purpose of this report to attempt a discussion of the matter theoretically with reference to finding a rough quantitative estimate" (p. 253).
The Effect of Airfoil Thickness and Plan Form on Lateral Control
This investigation was carried out for the purpose of determining the effectiveness of ailerons and tests were made on six model airfoils in the no. 1 wind tunnel of the National Advisory Committee for Aeronautics. The method consisted in measuring the rolling moments and aileron moments in the ordinary way.The results show that the thickness of the airfoil has very little effect on either the rolling moment or the hinge moment, although the resulting efficiency is somewhat higher for the tapered wings.
Effect of Altitude on Power of Aviation Engines
"These notes are intended to furnish practical and general data on the effect of altitude on engine power. The effective horsepower of an engine is a function of the mean pressure of the fluid acting on the pistons, of the R.P.M. of the engine and of the mechanical efficiency" (p. 1).
Effect of Changing the Mean Camber of an Airfoil Section
Methodical experiments with the series of airfoil sections of the same relative thickness and of variable relative cambers can be utilized for determining the effect of the camber on the aerodynamic properties of airfoil sections.
The effect of electrode temperature on the sparking voltage of short spark gaps
From Summary: "This report presents the results of an investigation to determine what effect the temperature of spark plug electrodes might have on the voltage at which a spark occurred. A spark gap was set up so that one electrode could be heated to temperatures up to 700 degrees C., while the other electrode and the air in the gap were maintained at room temperature. The sparking voltages were measured both with direct voltage and with voltage impulse from ignition coil. It was found that the sparking voltage of the gap decreased materially with increase of temperature. This change was more marked when the hot electrode was of negative polarity."
Effect of Ratio Between Volume and Surface Area of Airships
Report presenting an exploration of the concept that the ratio between the volume and the surface area also exerts an influence on other secondary characteristics of airships.
The Effect of Slipstream Obstructions on Air Propellers
"The screw propeller on airplanes is usually placed near other objects, and hence its performance may be modified by them. Results of tests on propellers free from slip stream obstructions, both fore and aft, are therefore subject to correction, for the effect of such obstructions and the purpose of the investigation was to determine the effect upon the thrust and torque coefficients and efficiency, for previously tested air propellers, of obstructions placed in the slip stream, it being realized that such previous tests had been conducted under somewhat ideal conditions that are impracticable of realization in flight" (p. 313).
The Effect of Wind Tunnel Turbulence Upon the Forces Measured on Models
These tests were undertaken to find the effect of turbulence in the air stream upon the lift and drag forces measured on models in the four-foot wind tunnel at the Massachusetts Institute of Technology. Maximum lifts and minimum drags were measured on Gottingen-387 and R.A.F.-15 airfoils, minimum drag on a streamlined strut, and the static pressure gradients for different conditions of turbulence were investigated. The results show that the scale of the turbulence (as defined in this report) has a marked effect upon the measured forces on models tested in the tunnel as well as on the pressure gradient, and it is recommended that further investigation of the phenomena be made with the aid of smoke and small wind vanes.
Engine performance and the determination of absolute ceiling
From Summary: "This report contains a brief study of the variation of engine power with temperature and pressure. The variation of propeller efficiency in standard atmosphere is obtained from the general efficiency curve which is developed in NACA report no. 168. The variation of both power available and power required are then determined and curves plotted, so that the absolute ceiling may be read directly from any known sea-level value of the ratio of power available to power required."
Experimental Investigation of the Effect of an Oscillating Airstream (Katzmayr Effect) on the Characteristics of Airfoils
A series of experiments were conducted related to the action of an airstream oscillating vertically on supporting surfaces. The object of the experiments was to verify the very interesting results of Mr. Katzmayr, Director of the Vienna Aerodynamics Laboratory, and, if possible, to obtain more complete data on the effect of the amplitude and velocity of the oscillations of the airstream. The results obtained by Mr. Katzmayr are briefly summarized. The conduct of the numerous experiments to verify his results are described in detail. Experimental results are given in tabular and graphical form.
Experiments on the Resistance of Airplane Wheels and Radiators
Experiments were made on the resistance of four airplane wheels of different sizes and coverings and two Lamblin radiators. The results show the important influence of the wheel coverings. The closing of a shutter, which was fitted to one of the radiators, considerably lessened the resistance.
Experiments With a Device for Shortening the Glide and Landing Run of an Airplane
The improvement of airplanes and increased safety of air traffic can be sought in various ways. In the experiments described below, the aim was to find some simple and inexpensive method of modifying present-day airplanes, so as to improve and simplify the process of landing.
Fatigue of Internal Combustion Engines
Engine conditions such as pressure characteristics, temperatures, and mechanical fatigue enable the employment of a criterion of general fatigue which simultaneously takes account of both mechanical and thermal conditions, for the sake of comparing any projected engine with engines of the same type already in use.
Forces on airships in gusts
In this report it is shown that determining the instantaneous angle of pitch, the acceleration of the gust is as important as its maximum velocity or yaw. Hitherto it has been assumed that the conditions encountered in gusts could be approximately represented by considering the airship to be at an instantaneous angle of yaw or pitch (according to whether the gust is horizontal or vertical), the instantaneous angle being tan to the (-1) power (v/v), where v is the component of the velocity of the gust at right angles to the longitudinal axis of the ship, and v is the speed of the ship. An expression is derived for this instantaneous angle in terms of the speed and certain aerodynamic characteristics of the airship, and of the maximum velocity and the acceleration of the gust, and the application of the expression to the determination of the forces on the ship is illustrated by numerical examples.
General Rules for Metal Aircraft Construction
"The Commissariat of Aviation deems it expedient to issue a few rules of a general character which should be followed by constructors in designing aircraft, into the manufacture of which metal enters to a considerable extent. The materials covered include: aluminum, duralumin, soft steel, high-resistance steel, in sheets, tubing, and shaped elements" (p. 1).
High Altitude Flying
This note investigates the effect of high altitude or low atmospheric pressure upon the operation of an engine and the effect of the low pressure and lack of oxygen and of the very low temperatures upon the pilot and upon the performance of the airplane itself.
Historical Notes on Aerodynamic Research
"It is obviously interesting to know the names of those who were the first contributors to aeronautical science. Therefore, without claiming to give a complete history, I present in this article a summary list of names in chronological order relating to the history of experiments on the resistance of the air and its application to aeronautics" (p. 1).
Increasing the Compression Pressure in an Engine by Using a Long Intake Pipe
"During some tests of a one-cylinder engine, using gas oil (diesel engine oil, specific gravity 0.86 at 60 F) with solid injection and compression ignition, it was found to be necessary to increase either the jacket water temperature or the compression pressure in order to start the engine. It was found that a sufficient increase in compression pressure could be obtained simply by attaching a long pipe to the inlet flange of the cylinder. However, since no data were available giving the values of the increase in compression pressure that might be expected from such a step-up, an investigation was made covering some engine speeds between 500 r.p.m. and 1800 r.p.m." (p. 1).
Induced Drag of Multiplanes
"The most important part of the resistance or drag of a wing system, the induced drag, can be calculated theoretically, when the distribution of lift on the individual wings is known. The calculation is based upon the assumption that the lift on the wings is distributed along the wing in proportion to the ordinates of a semi-ellipse. Formulas and numerical tables are given for calculating the drag. In this connection, the most favorable arrangements of biplanes and triplanes are discussed and the results are further elucidated by means of numerical examples" (p. 1).
The Induction Factor Used for Computing the Rolling Moment Due to the Ailerons
In the following note, prepared for the National Advisory Committee for Aeronautics, this induction factor is determined from the result of a model test, and compared with a formula recently developed by the author. The two results are found to be in substantial agreement.
The Inertia Coefficients of an Airship in a Frictionless Fluid
The apparent inertia of an airship hull is examined. The exact solution of the aerodynamical problem is studied for hulls of various shapes with special attention given to the case of an ellipsoidal hull. So that the results for the ellipsoidal hull may be readily adapted to other cases, they are expressed in terms of the area and perimeter of the largest cross section perpendicular to the direction of motion by means of a formula involving a coefficient kappa which varies only slowly when the shape of the hull is changed, being 0.637 for a circular or elliptic disk, 0.5 for a sphere, and about 0.25 for a spheroid of fineness ratio.
The Inertial Coefficients of an Airship in a Frictionless Fluid
This report deals with the investigation of the apparent inertia of an airship hull. The exact solution of the aerodynamical problem has been studied for hulls of various shapes and special attention has been given to the case of an ellipsoidal hull. In order that the results for this last case may be readily adapted to other cases, they are expressed in terms of the area and perimeter of the largest cross section perpendicular to the direction motion by means of a formula involving a coefficient K which varies only slowly when the shape of the hull is changed, being 0.637 for a circular or elliptic disk, 0.5 for a sphere, and about 0.25 for a spheroid of fineness ratio 7.
The influence of inlet air temperature and jacket water temperature on initiating combustion in a high speed compression ignition engine
Report presenting some tests to determine the influence on initiating combustion in a one-cylinder compression ignition engine of inlet air temperature and jacket water temperature. The results show that the engine is very sensitive to changes in final compression pressure, induced by a change in the initial compression pressure, and that some way of providing compensating means for conditions that tend to lower section pressure is necessary.
The Influence of the Form of a Wooden Beam on Its Stiffness and Strength 1: Deflection of Beams With Special Reference to Shear Deformations
The purpose of this investigation was to determine to what extent ordinary deflection formulas, which neglect shear deformations, are in error when applied to beams of various sections, and to develop reasonably accurate yet comparatively simple formulas which take into account such deformations. A great many tests were made to determine the amount of shear deformation for beams of various sections tested over many different spans. As the span over which the beam is tested is increased the error introduced by neglecting shear deformations becomes less, and the values obtained by substituting measured deflections in the ordinary formulas approach more nearly the modulus of elasticity in tension and compression.
Back to Top of Screen