You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Serial/Series Title: NACA Technical Reports
 Collection: National Advisory Committee for Aeronautics Collection
Application of the method of characteristics to supersonic rotational flow
A system for calculating the physical properties of supersonic rotational flow with axial symmetry and supersonic rotational flow in a two-dimensional field was determined by use of the characteristics method. The system was applied to the study of external and internal flow for supersonic inlets with axial symmetry. For a circular conical inlet the shock that occurred at the lip of the inlet became stronger as it approached the axis of the inlet and became a normal shock at the axis. The region in which strong shock occurred increased with increase of the angle of internal cone at the lip of the inlet. For an inlet with a central body the method of characteristics was applied to the design of an internal channel shape that, theoretically, results in very efficient recompression in the inlet. It was shown that if an effuser is connected with the diffuser a body of revolution with very small shock-wave drag can be determined. (author). digital.library.unt.edu/ark:/67531/metadc65467/
The application of the statistical theory of extreme values to gust-load problems
An analysis is presented which indicates that the statistical theory of extreme values is applicable to the problems of predicting the frequency of encountering the larger gust loads and gust velocities for both specific test conditions as well as commercial transport operations. The extreme-value theory provides an analytic form for the distributions of maximum values of gust load and velocity. Methods of fitting the distribution are given along with a method of estimating the reliability of the predictions. The theory of extreme values is applied to available load data from commercial transport operations. The results indicate that the estimates of the frequency of encountering the larger loads are more consistent with the data and more reliable than those obtained in previous analyses. (author). digital.library.unt.edu/ark:/67531/metadc65484/
Application of Theodorsen's theory to propeller design
A theoretical analysis is presented for obtaining, by use of Theodorsen's propeller theory, the load distribution along a propeller radius to give the optimum propeller efficiency for any design condition. The efficiencies realized by designing for the optimum load distribution are given in graphs, and the optimum efficiency for any design condition may be read directly from the graph without any laborious calculations. Examples are included to illustrate the method of obtaining the optimum load distributions for both single-rotating and dual-rotating propellers. digital.library.unt.edu/ark:/67531/metadc60237/
Applications of Modern Hydrodynamics to Aeronautics
The report gives, rather briefly, in part one an introduction to hydrodynamics which is designed to give those who have not yet been actively concerned with this science such a grasp of the theoretical underlying principles that they can follow the subsequent developments. In part two there follows a separate discussion of the different questions to be considered, in which the theory of aerofoils claims the greatest portion of the space. The last part is devoted to the application of the aerofoil theory to screw propellers. A table giving the most important quantities is at the end of the report. A short reference list of the literature on the subject and also a table of contents are added. digital.library.unt.edu/ark:/67531/metadc65767/
Applications of Modern Hydrodynamics to Aeronautics. Part 1: Fundamental Concepts and the Most Important Theorems. Part 2: Applications
A discussion of the principles of hydrodynamics of nonviscous fluids in the case of motion of solid bodies in a fluid is presented. Formulae are derived to demonstrate the transition from the fluid surface to a corresponding 'control surface'. The external forces are compounded of the fluid pressures on the control surface and the forces which are exercised on the fluid by any solid bodies which may be inside of the control surfaces. Illustrations of these formulae as applied to the acquisition of transformations from a known simple flow to new types of flow for other boundaries are given. Theoretical and experimental investigations of models of airship bodies are presented. digital.library.unt.edu/ark:/67531/metadc53396/
Appreciation and Prediction of Flying Qualities
The material given in this report summarizes some of the results of recent research that will aid the designers of an airplane in selecting or modifying a configuration to provide satisfactory stability and control characteristics. The requirements of the NACA for satisfactory flying qualities, which specify the important stability and control characteristics of an airplane from the pilot's standpoint, are used as the main topics of the report. A discussion is given of the reasons for the requirements, of the factors involved in obtaining satisfactory flying qualities, and of the methods used in predicting the stability and control characteristics of an airplane. The material is based on lecture notes for a training course for research workers engaged in airplane stability and control investigations. digital.library.unt.edu/ark:/67531/metadc60241/
Approximate analysis of effects of large deflections and initial twist on torsional stiffness of a cantilever plate subjected to thermal stresses
An approximate analysis of the nonlinear effects of initial twist and large deflections on the torsional stiffness of a cantilever plate subjected to a nonuniform temperature distribution is presented. The Von Karman large-deflection equations are satisfied through the use of a variational principle. The results show that initial twist and applied moments can have significant effects on the changes in stiffness produced by nonuniform heating, particularly in the region of the buckling temperature difference. Results calculated by this approximate analysis are in satisfactory agreement with measured torsional deformations and changes in natural frequency. (author). digital.library.unt.edu/ark:/67531/metadc65483/
Approximate stress analysis of multistringer beams with shear deformation of the flanges
The problem of the skin-stringer combinations used as axially loaded panels or as covers for box beams is considered from the point of view of the practical stress analyst. By a simple substitution the problem is reduced to the problem of the single-stringer structure, which has been treated in NACA Report no. 608. The method of making this substitution is essentially empirical; in order to justify it, comparisons are shown between calculations and strain-gage tests of three beams tested by the author and of one compression panel and three beams tested and reported elsewhere. digital.library.unt.edu/ark:/67531/metadc66294/
Approximations for column effect in airplane wing spars
The significance attaching to "column effect" in airplane wing spars has been increasingly realized with the passage of time, but exact computations of the corrections to bending moment curves resulting from the existence of end loads are frequently omitted because of the additional labor involved in an analysis by rigorously correct methods. The present report represents an attempt to provide for approximate column effect corrections that can be graphically or otherwise expressed so as to be applied with a minimum of labor. Curves are plotted giving approximate values of the correction factors for single and two bay trusses of varying proportions and with various relationships between axial and lateral loads. It is further shown from an analysis of those curves that rough but useful approximations can be obtained from Perry's formula for corrected bending moment, with the assumed distance between points of inflection arbitrarily modified in accordance with rules given in the report. The discussion of general rules of variation of bending stress with axial load is accompanied by a study of the best distribution of the points of support along a spar for various conditions of loading. digital.library.unt.edu/ark:/67531/metadc65903/
Area-suction boundary-layer control as applied to the trailing-edge flaps of a 35 degree swept-wing airplane
A wind-tunnel investigation was made to determine the effects on the aerodynamic characteristics of a 35 degree swept-wing airplane of applying area-suction boundary-layer control to the trailing-edge flaps. Flight tests of a similar airplane were then conducted to determine the effect of boundary-layer control in the handling qualities and operation of the airplane, particularly during landing. The wind-tunnel and flight tests indicated that area suction applied to the trailing-edge flaps produced significant increases in flap lift increment. Although the flap boundary-layer control reduced the stall speed only slightly, a reduction in minimum comfortable approach speed of about 12 knots was obtained. digital.library.unt.edu/ark:/67531/metadc60791/
Arrangement of fusiform bodies to reduce the wave drag at supersonic speeds
By means of linearized-body theory and reverse-flow theorems, the wave drag of a system of fusiform bodies at zero angle of attack and supersonic speeds is studied to determine the effect of varying the relative location of the component parts. The investigation is limited to two-body and three-body arrangements of Sears-Haack minimum-drag bodies. It is found that in certain arrangements the interference effects are beneficial, and may even result in the two or three-body system having no more wave drag than that of the principal body alone. The most favorable location appears to be one in which the maximum cross-section of the auxiliary body is slightly forward of the Mach cone from the tail of the main body. The least favorable is the region between the Mach cone from the nose and the forecone from the tail of the main body. (author). digital.library.unt.edu/ark:/67531/metadc65575/
Astronomical methods in aerial navigation
The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended. digital.library.unt.edu/ark:/67531/metadc65849/
Attainable circulation about airfoils in cascade
From consideration of available information on boundary-layer behavior, a relation among profile thickness, maximum surface velocity, Reynolds number, velocity diagram, and solidity is established for a cascade of airfoils immersed in a two-dimensional incompressible fluid flow. Several cascades are computed to show the effect of various cascade design parameters on minimum required cascade solidity. Comparisons with experimentally determined blade performance show that the derived blade loadings are equal or higher for moderate flow deceleration and somewhat lower for large deceleration. Blades with completely laminar flow appear practical for impulse or reaction blading. digital.library.unt.edu/ark:/67531/metadc60281/
Attenuation in a shock tube due to unsteady-boundary-layer action
A method is presented for obtaining the attenuation of a shock wave in a shock tube due to the unsteady boundary layer along the shock-tube walls. It is assumed that the boundary layer is thin relative to the tube diameter and induces one-dimensional longitudinal pressure waves whose strength is proportional to the vertical velocity at the edge of the boundary layer. The contributions of the various regions in a shock tube to shock attenuation are indicated. The method is shown to be in reasonably good agreement with existing experimental data. digital.library.unt.edu/ark:/67531/metadc60737/
Auto-ignition and combustion of diesel fuel in a constant-volume bomb
Report presents the results of a study of variations in ignition lag and combustion associated with changes in air temperature and density for a diesel fuel in a constant-volume bomb. The test results have been discussed in terms of engine performance wherever comparisons could be drawn. The most important conclusions drawn from this investigation are: the ignition lag was essentially independent of the injected fuel quantity. Extrapolation of the curves for the fuel used shows that the lag could not be greatly decreased by exceeding the compression-ignition engines. In order to obtain the best combustion and thermal efficiency, it was desirable to use the longest ignition lag consistent with a permissible rate of pressure rise. digital.library.unt.edu/ark:/67531/metadc66275/
Automatic control systems satisfying certain general criterions on transient behavior
An analytic method for the design of automatic controls is developed that starts from certain arbitrary criterions on the behavior of the controlled system and gives those physically realizable equations that the control system can follow in order to realize this behavior. The criterions used are developed in the form of certain time integrals. General results are shown for systems of second order and of any number of degrees of freedom. Detailed examples for several cases in the control of a turbojet engine are presented. digital.library.unt.edu/ark:/67531/metadc60423/
The automotive ignition coil
This report gives the results of a series of measurements on the secondary voltage induced in an ignition coil of typical construction under a variety of operating conditions. These results show that the theoretical predictions hitherto made as to the behavior of this type of apparatus are in satisfactory agreement with the observed facts. The large mass of data obtained is here published both for the use of other investigators who may wish to compare them with other theoretical predictions and for the use of automotive engineers who will here find definite experimental results showing the effect of secondary capacity and resistance on the crest voltage produced by ignition apparatus. digital.library.unt.edu/ark:/67531/metadc66030/
Average properties of compressible laminar boundary layer on flat plate with unsteady flight velocity
The time-average characteristics of boundary layers over a flat plate in nearly quasi-steady flow are determined. The plate may be either insulated or isothermal. The time averages are found without specifying the plate velocity explicitly except that it is positive and has an average value. digital.library.unt.edu/ark:/67531/metadc60726/
Average skin-friction drag coefficients from tank tests of a parabolic body of revolution (NACA RM-10)
Average skin-friction drag coefficients were obtained from boundary-layer total-pressure measurements on a parabolic body of revolution (NACA rm-10, basic fineness ratio 15) in water at Reynolds numbers from 4.4 x 10(6) to 70 x 10(6). The tests were made in the Langley tank no. 1 with the body sting-mounted at a depth of two maximum body diameters. The arithmetic mean of three drag measurements taken around the body was in good agreement with flat-plate results, but, apparently because of the slight surface wave caused by the body, the distribution of the boundary layer around the body was not uniform over part of the Reynolds number range. digital.library.unt.edu/ark:/67531/metadc60535/
Axial-load fatigue properties of 24S-T and 75S-T aluminum alloy as determined in several laboratories
In the initial phase of a NACA program on fatigue research, axial-load tests on 24S-T3 and 75S-T6 aluminum-alloy sheet have been made at the Battelle Memorial Institute and at the Langley Aeronautical Laboratory of the National Advisory Committee for Aeronautics. The test specimens were polished and unnotched. The manufacturer of the material, the Aluminum Company of America, has made axial-load tests on 24S-T4 and 75S-T6 rod material. The test techniques used at the three laboratories are described in detail; the test results are presented and are compared with each other and with results obtained on unpolished sheet by the National Bureau of Standards. (author). digital.library.unt.edu/ark:/67531/metadc65550/
Axially symmetric shapes with minimum wave drag
The external wave drag of bodies of revolution moving at supersonic speeds can be expressed either in terms of the geometry of the body, or in terms of the body-simulating axial source distribution. For purposes of deriving optimum bodies under various given conditions, it is found that the second of the methods mentioned is the more tractable. By use of a quasi-cylindrical theory, that is, the boundary conditions are applied on the surface of a cylinder rather than on the body itself, the variational problems of the optimum bodies having prescribed volume or caliber are solved. The streamline variations of cross-sectional area and drags of the bodies are exhibited, and some numerical results are given. digital.library.unt.edu/ark:/67531/metadc60646/
Axisymmetric supersonic flow in rotating impellers
General equations are developed for isentropic, frictionless, axisymmetric flow in rotating impellers with blade thickness taken into account and with blade forces eliminated in favor of the blade-surface function. It is shown that the total energy of the gas relative to the rotating coordinate system is dependent on the stream function only, and that if the flow upstream of the impeller is vortex-free, a velocity potential exists which is a function of only the radial and axial distances in the impeller. The characteristic equations for supersonic flow are developed and used to investigate flows in several configurations in order to ascertain the effect of variations of the boundary conditions on the internal flow and the work input. Conditions varied are prerotation of the gas, blade turning rate, gas velocity at the blade tips, blade thickness, and sweep of the leading edge. digital.library.unt.edu/ark:/67531/metadc60444/
Basic considerations in the combustion of hydrocarbon fuels with air
Basic combustion research is collected, collated, and interpreted as it applies to flight propulsion. The following fundamental processes are treated in separate chapters: atomization and evaporation of liquid fuels, flow and mixing processes in combustion chambers, ignition and flammability of hydrocarbon fuels, laminar flame propagation, turbulent flames, flame stabilization, diffusion flames, oscillations in combustors, and smoke and coke formation in the combustion of hydrocarbon-air mixtures. Theoretical background, basic experimental data, and practical significance to flight propulsion are presented. digital.library.unt.edu/ark:/67531/metadc65598/
Behavior of materials under conditions of thermal stress
A review is presented of available information on the behavior of brittle and ductile materials under conditions of thermal stress and thermal shock. For brittle materials, a simple formula relating physical properties to thermal-shock resistance is derived and used to determine the relative significance of two indices currently in use for rating materials. For ductile materials, thermal-shock resistance depends upon the complex interrelation among several metallurgical variables which seriously affect strength and ductility. These variables are briefly discussed and illustrated from literature sources. The importance of simulating operating conditions in tests for rating materials is especially to be emphasized because of the importance of testing conditions in metallurgy. A number of practical methods that have been used to minimize the deleterious effects of thermal stress and thermal shock are outlined. digital.library.unt.edu/ark:/67531/metadc60551/
Bending and shear stresses developed by the instantaneous arrest of the root of a moving cantilever beam
A theoretical and experimental investigation has been made of the behavior of a cantilever beam in transverse motion when its root is suddenly brought to rest. Equations are given for determining the stresses, the deflections, and the accelerations that arise in the beam as a result of the impact. The theoretical equations, which have been confirmed experimentally, reveal that, at a given percentage of the distance from root to tip, the bending stresses for a particular mode are independent of the length of the beam, whereas the shear stresses vary inversely with the length. digital.library.unt.edu/ark:/67531/metadc60112/
Bending moments, envelope, and cable stresses in non-rigid airships
This report describes the theory of calculating the principal stresses in the envelope of a nonrigid airship used by the Bureau of Aeronautics, United States Navy. The principal stresses are due to the gas pressure and the unequal distribution of weight and buoyancy, and the concentrated loads from the car suspension cables. The second part of the report deals with the variations of tensions in the car suspension cables of any type of airship, with special reference to the rigid type, due to the propeller thrust or the inclination of the airship longitudinally. digital.library.unt.edu/ark:/67531/metadc65766/
Bending of rectangular plates with large deflections
The solution of Von Karman's fundamental equations for large deflections of plates is presented for the case of a simply supported rectangular plate under combined edge compression and lateral loading. Numerical solutions are given for square plates and for rectangular plates with a width-span ratio of 3:1. The effective widths under edge compression are compared with effective widths according to Von Karman, Bengston, Marguerre, and Cox and with experimental results by Ramberg, Mcpherson, and Levy. The deflections of a square plate under lateral pressure are compared with experimental and theoretical results by Kaiser. It is found that the effective widths agree closely with Marguerre's formula and with the experimentally observed values and that the deflections agree with the experimental results and with Kaiser's work. digital.library.unt.edu/ark:/67531/metadc59995/
Bending-torsion flutter calculations modified by subsonic compressibility corrections
A number of calculations of bending-torsion wing flutter are made at two Mach numbers, m=0 (incompressible case) and m=0.7, and results are compared. The air forces employed for the case of m=0.7 are based on Frazer's recalculation of Possio's results, which are derived on the assumption of small disturbances to the main flow. For ordinary wings of normal density and of low bending frequency in comparison with torsion frequency, the compressibility correction to the flutter speed appears to be of the order of a few percent; whereas the correction to flutter speed for high-density wing sections, such as propeller sections, and to the wing-divergence speed in general, may be based on a rule using the (1 - m(2))1/4 factor and, for m=0.7, represents a decrease of the order of 17 percent. digital.library.unt.edu/ark:/67531/metadc65464/
A biharmonic relaxation method for calculating thermal stress in cooled irregular cylinders
A numerical method was developed for calculating thermal stresses in irregular cylinders cooled by one or more internal passages. The use of relaxation methods and elementary methods of finite differences was found to give approximations to the correct values when compared with previously known solutions for concentric circular cylinders possessing symmetrical and asymmetrical temperature distributions. digital.library.unt.edu/ark:/67531/metadc60413/
Blockage corrections for three-dimensional-flow closed-throat wind tunnels, with consideration of the effect of compressibility
Theoretical blockage corrections are presented for a body of revolution and for a three-dimensional unswept wing in a circular or rectangular wind tunnel. The theory takes account of the effects of the wake and of the compressibility of the fluid, and is based on the assumption that the dimensions of the model are small in comparison with those of the tunnel throat. Formulas are given for correcting a number of the quantities, such as dynamic pressure and Mach number, measured in wing-tunnel tests. The report presents a summary and unification of the existing literature on the subject. digital.library.unt.edu/ark:/67531/metadc60334/
Blockage Corrections for Three-Dimensional-Flow Closed-Throat Wind Tunnels, with Consideration of the Effect of Compressibility
Theoretical blockage corrections are presented for a body of revolution and for a three-dimensional, unswept wing in a circular or rectangular wind tunnel. The theory takes account of the effects of the wake and of the compressibility of the fluid, and is based on the assumption that the dimensions of the model are small in comparison with those of the tunnel throat. Formulas are given for correcting a number of the quantities, such as dynamic pressure and Mach number, measured in wind tunnel tests. The report presents a summary and unification of the existing literature on the subject. digital.library.unt.edu/ark:/67531/metadc53415/
Blower cooling of finned cylinders
Several electrically heated finned steel cylinders enclosed in jackets were cooled by air from a blower. The effect of the air conditions and fin dimensions on the average surface heat-transfer coefficient q and the power required to force the air around the cylinders were determined. Tests were conducted at air velocities between the fins from 10 to 130 miles per hour and at specific weights of the air varying from 0.046 to 0.074 pound per cubic foot. The fin dimensions of the cylinders covered a range in pitches from 0.057 to 0.25 inch average fin thicknesses from 0.035 to 0.04 inch, and fin widths from 0.67 to 1.22 inches. digital.library.unt.edu/ark:/67531/metadc66246/
Blowing-type boundary-layer control as applied to the trailing-edge flaps of a 35 degree swept-wing airplane
A wind-tunnel investigation was made to determine the effects on the aerodynamic characteristics of a 35 degree swept-wing airplane of applying blowing-type boundary-layer control to the trailing-edge flaps. Flight tests of a similar airplane were then conducted to determine the effects of boundary-layer control on the handling qualities and operation of the airplane, particularly during landing and take-off. The wind-tunnel and flight tests indicated that blowing over the flaps produced large increases in flap lift increment, and significant increases in maximum lift. The use of blowing permitted reductions in the landing approach speeds of as much as 12 knots. digital.library.unt.edu/ark:/67531/metadc60789/
Bodies of revolution having minimum drag at high supersonic airspeeds
Approximate shapes of nonlifting bodies having minimum pressure foredrag at high supersonic airspeeds are calculated. With the aid of Newton's law of resistance, the investigation is carried out for various combinations of the conditions of given body length, base diameter, surface area, and volume. In general, it is found that when body length is fixed, the body has a blunt nose; whereas, when the length is not fixed, the body has a sharp nose. The additional effect of curvature of the flow over the surface is investigated to determine its influence on the shapes for minimum drag. The effect is to increase the bluntness of the shapes in the region of the nose and the curvature in the region downstream of the nose. These shape modifications have, according to calculation, only a slight tendency to reduce drag. Several bodies of revolution of fineness ratios 3 and 5, including the calculated shapes of minimum drag for given length and base diameter and for given base diameter and surface area, were tested at Mach numbers from 2.73 to 6.28. A comparison of theoretical and experimental foredrag coefficients indicates that the calculated minimum-drag bodies are reasonable approximations to the correct shape. digital.library.unt.edu/ark:/67531/metadc60702/
Bomb trajectories
The report is a mathematical treatise dealing with the trajectories of bombs of high terminal velocity, dropped from a great altitude. digital.library.unt.edu/ark:/67531/metadc65728/
Boron and zirconium from crucible refractories in a complex heat-resistant alloy
In a laboratory study of the factors involved in the influence of induction vacuum melting on 55ni-20cr-15co-4mo-3ti-3al heat resistant alloy, it was found that the major factor was the type of ceramic used as the crucible. The study concluded that trace amounts of boron or zirconium derived from reaction of the melt with the crucible refactories improved creep-rupture properties at 1,600 degrees F. Boron was most effective and, in addition, markedly improved hot-workability. digital.library.unt.edu/ark:/67531/metadc60819/
Buckling of thin-walled cylinder under axial compression and internal pressure
An investigation was made of a thin-walled cylinder under axial compression and various internal pressures to study the effect of the internal pressure on the compressive buckling stress of the cylinder. A theoretical analysis based on a large-deflection theory was also made. The theoretically predicted increase of compressive buckling stress due to internal pressure agrees fairly well with the experimental results. (author). digital.library.unt.edu/ark:/67531/metadc65490/
Calculated and measured pressure distributions over the midspan section of the NACA 4412 airfoil
Pressures were simultaneously measured in the variable-density tunnel at 54 orifices distributed over the midspan section of 5 by 30 inch rectangular model of the NACA 4412 airfoil at 17 angles of attack ranging from -20 degrees to 30 degrees at a Reynolds number of approximately 3,000,000. Accurate data were thus obtained for studying the deviations of the results of potential-flow theory from measured results. The results of the analysis and a discussion of the experimental technique are presented. digital.library.unt.edu/ark:/67531/metadc66221/
Calculated and measured stresses in simple panels subject to intense random acoustic loading including the near noise field of a turbojet engine
Flat 2024-t3 aluminum panels measuring 11 inches by 13 inches were tested in the near noise fields of a 4-inch air jet and turbojet engine. The stresses which were developed in the panels are compared with those calculated by generalized harmonic analysis. The calculated and measured stresses were found to be in good agreement. In order to make the stress calculations, supplementary data relating to the transfer characteristics, damping, and static response of flat and curved panels under periodic loading are necessary and were determined experimentally. In addition, an appendix containing detailed data on the near pressure field of the turbojet engine is included. digital.library.unt.edu/ark:/67531/metadc60786/
The calculated effect of various hydrodynamic and aerodynamic factors on the take-off of a large flying boat
Report presents the results of an investigation made to determine the influence of various factors on the take-off performance of a hypothetical large flying boat by means of take-off calculations. The factors varied in the calculations were size of hull (load coefficient), wing setting, trim, deflection of flap, wing loading, aspect ratio, and parasite drag. The take-off times and distances were calculated to the stalling speeds and the performance above these speeds was separately studied to determine piloting technique for optimum take-off. digital.library.unt.edu/ark:/67531/metadc66362/
The calculated performance of airplanes equipped with supercharging engines
In part one of this report are presented the theoretical performance curves of an airplane engine equipped with a supercharging compressor. In predicting the gross power of a supercharging engine, the writer uses temperature and pressure correction factors based on experiments made at the Bureau of Standards (NACA report nos. 45 and 46). Means for estimating the temperature rise in the compressor are outlined. Part two of this report presents an estimation of the performance curves of an airplane fitted with a supercharging engine. A supercharging installation suitable for commercial use is described, and it is shown that with the use of the compressor a great saving in fuel and a considerable increase in carrying capacity can be effected simultaneously. In an appendix the writer derives a theoretical formula for the correction of the thrust coefficient of an airscrew to offset the added resistance of the airplane due to the slip-stream effect. digital.library.unt.edu/ark:/67531/metadc65751/
Calculated spanwise lift distributions, influence functions, and influence coefficients for unswept wings in subsonic flow
Spanwise lift distributions have been calculated for nineteen unswept wings with various aspect ratios and taper ratios and with a variety of angle-of-attack or twist distributions, including flap and aileron deflections, by means of the Weissinger method with eight control points on the semispan. Also calculated were aerodynamic influence coefficients which pertain to a certain definite set of stations along the span, and several methods are presented for calculating aerodynamic influence functions and coefficients for stations other than those stipulated. The information presented in this report can be used in the analysis of untwisted wings or wings with known twist distributions, as well as in aeroelastic calculations involving initially unknown twist distributions. digital.library.unt.edu/ark:/67531/metadc60615/
The calculation of downwash behind supersonic wings with an application to triangular plan forms
A method is developed consistent with the assumptions of small perturbation theory which provides a means of determining the downwash behind a wing in supersonic flow for a known load distribution. The analysis is based upon the use of supersonic doublets which are distributed over the plan form and wake of the wing in a manner determined from the wing loading. The equivalence in subsonic and supersonic flow of the downwash at infinity corresponding to a given load distribution is proved. digital.library.unt.edu/ark:/67531/metadc60289/
Calculation of low-pressure indicator diagrams
Report develops a fundamental conception and partial application of a method for calculating the pressure-volume relationships to be expected for any given engine design. It outlines a method of computing and interpreting low-pressure indicator cards. digital.library.unt.edu/ark:/67531/metadc65669/
The calculation of pressure on slender airplanes in subsonic and supersonic flow
Under the assumption that a wing, body, or wing-body combination is slender or flying at near sonic velocity, expressions are given which permit the calculation of pressure in the immediate vicinity of the configuration. The disturbance field, in both subsonic and supersonic flight, is shown to consist of two-dimensional disturbance fields extending laterally and a longitudinal field that depends on the streamwise growth of cross-sectional area. A discussion is also given of couplings, between lifting and thickness effects, that necessarily arise as a result of the quadratic dependence of pressure on the induced velocity components. (author). digital.library.unt.edu/ark:/67531/metadc65547/
The calculation of take-off run
A comparatively simple method of calculating length of take-off run is developed from the assumption of a linear variation in net accelerating force with air speed and it is shown that the error involved is negligible. digital.library.unt.edu/ark:/67531/metadc66107/
Calculation of the aerodynamic characteristics of tapered wings with partial-span flaps
Factors derived from wing theory are presented. By means of these factors, the angle of zero lift, the lift-curve slope, the pitching moment, the aerodynamic-center position, and the induced drag of tapered wings with partial-span flaps may be calculated. The factors are given for wings of aspect ratios 6 and 10 , of taper ratios from 0.25 to 1.00, and with flaps of various length. An example is presented of the method of application of the factors. Fair agreement with experimental results is shown for two wings of different taper ratio having plain flaps of various spacing. digital.library.unt.edu/ark:/67531/metadc66323/
Calculation of the aerodynamic loading of swept and unswept flexible wings of arbitrary stiffness
A method is presented for calculating the aerodynamic loading, the divergence speed, and certain stability derivatives of swept and unswept wings and tail surfaces of arbitrary stiffness. Provision is made for using either stiffness curves and root rotation constants or structural influence coefficients in the analysis. Computing forms, tables of numerical constants required in the analysis, and an illustrative example are included to facilitate calculations by means of the method. digital.library.unt.edu/ark:/67531/metadc65487/
Calculation of the chordwise load distribution over airfoil sections with plain, split, or serially hinged trailing-edge flaps
A method is presented for the rapid calculation of the incremental chordwise normal-force distribution over an airfoil section due to the deflection of a plain flap or tab, a split flap, or a serially hinged flap. This report is intended as a supplement to NACA Report no. 631, wherein a method is presented for the calculation of the chordwise normal-force distribution over an airfoil without a flap or, as it may be considered, an airfoil with flap (or flaps) neutral. The method enables the determination of the form and magnitude of the incremental normal-force distribution to be made for an airfoil-flap combination for which the section characteristics have been determined. A method is included for the calculation of the flap normal-force and hinge-moment coefficients without necessitating a determination of the normal-force distribution. digital.library.unt.edu/ark:/67531/metadc66292/
Calculation of the lateral control of swept and unswept flexible wings of arbitrary stiffness
A method similar to that of NACA rep. 1000 is presented for calculating the effectiveness and the reversal speed of lateral-control devices on swept and unswept wings of arbitrary stiffness. Provision is made for using either stiffness curves and root-rotation constants or structural influence coefficients in the analysis. Computing forms and an illustrative example are included to facilitate calculations by means of the method. The effectiveness of conventional aileron configurations and the margin against aileron reversal are shown to be relatively low for swept wings at all speeds and for all wing plan forms at supersonic speeds. digital.library.unt.edu/ark:/67531/metadc60367/