Search Results

Aerodynamic Characteristics of Airfoils 6: Continuation of Reports Nos. 93, 124, 182, 244, and 286
"This collection of data on airfoils has been made from the published reports of a number of the leading aerodynamic laboratories of this country and Europe. The information which was originally expressed according to the different customs of the several laboratories is here presented in a uniform series of charts and tables suitable for use of designing engineers and for purposes of general reference. The authority for the results here presented is given as the name of the laboratory at which the experiments were conducted, with the size of the model, wind velocity, and year of test" (p. 213).
Aerodynamic Characteristics of Twenty-Four Airfoils at High Speeds
"If a propeller is mounted directly on the of a modern high-speed airplane engine, the outer airfoil sections of the propeller travel at speeds approaching the speed of sound. It is possible by the use of gearing and a somewhat larger propeller to reduce the speed of the propeller sections, but only at the expense of additional weight and some frictional loss of power. This report presents the results of this work" (p. 327).
Aircraft Woods: Their Properties, Selection, and Characteristics
From Summary: "This report presents, further, information on the properties of various other native species of wood compared with spruce, and discusses the characteristics of a considerable number of them from the standpoint of their possible application in aircraft manufacture to supplement the woods that are now most commonly used."
Collection of wind-tunnel data on commonly used wing sections
This report groups in a uniform manner the aerodynamic properties of commonly used wing sections as determined from tests in various wind tunnels. The data have been collected from reports of a number of laboratories. Where necessary, transformation has been made to the absolute system of coefficients and tunnel wall interference corrections have been applied. Tables and graphs present the data in the various forms useful to the engineer in the selection of a wing section.
Flight tests on U.S.S. Los Angeles. Part 2: stress and strength determination
From Summary: "The tests described in this report furnished data on the actual aerodynamic forces, and the resulting stresses and bending moments in the hull of the U. S. S. "Los Angeles" during as severe still-air maneuvers as the airship would normally be subjected to, and in straight flight during as rough air as is likely to occur in service, short of squall or storm conditions. The maximum stresses were found to be within the limits provided for in accepted practice in airship design. Normal flight in rough air was shown to produce forces and stresses about twice as great as the most severe still-air maneuvers."
Fuel Vapor Pressures and the Relation of Vapor Pressure to the Preparation of Fuel for Combustion in Fuel Injection Engines
"This investigation on the vapor pressure of fuels was conducted in connection with the general research on combustion in fuel injection engines. The purpose of the investigation was to study the effects of high temperatures such as exist during the first stages of injection on the vapor pressures of several fuels and certain fuel mixtures, and the relation of these vapor pressures to the preparation of the fuel for combustion in high-speed fuel injection engines" (p. 385).
Joint report on standardization tests on N.P.L. R.A.F 15 airfoil model
From Summary: "This report contains the wind-tunnel test data obtained in the United States on a 36 by 6 inch R.A.F. 15 airfoil model prepared by the British Aeronautical Research Committee for International Trials. Tests were made in cooperation with the National Advisory Committee for Aeronautics at the Bureau of Standards, Langley Memorial Aeronautical Laboratory, Massachusetts Institute of Technology, and McCook field. In addition to brief descriptions of the various wind tunnels and methods of testing, the report contains an analysis of the test data. It is shown that while in general the agreement is quite satisfactory there are two cases in which it is unsatisfactory."
Tests of Five Metal Model Propellers With Various Pitch Distributions in a Free Wind Stream and in Combination With Model VE-7 Fuselage
"This report describes the tests of five adjustable blade metal model propellers both in a free wind stream and in combination with a model fuselage with stub wings. The propellers are of the same form and cross section but have variations in radial distributions of pitch. By making a survey of the radial distribution of air velocity through the propeller plane of the model fuselage it was found that this velocity varies from zero at the hub center to approximately free stream velocity at the blade tip" (p. 501).
The Torsion of Members Having Sections Common in Aircraft Construction
"Within recent years a great variety of approximate torsion formulas and drafting-room processes have been advocated. In some of these, especially where mathematical considerations are involved, the results are extremely complex and are not generally intelligible to engineers. The principal object of this investigation was to determine by experiment and theoretical investigation how accurate the more common of these formulas are and on what assumptions they are founded and, if none of the proposed methods proved to be reasonable accurate in practice, to produce simple, practical formulas from reasonably correct assumptions, backed by experiment. A second object was to collect in readily accessible form the most useful of known results for the more common sections" (p. 675).
Wind-Tunnel Tests on a Series of Wing Models Through a Large Angle of Attack Range Part 1: Force Tests
"This investigation covers force tests through a large range of angle of attack on a series of monoplane and biplane wing models. The tests were conducted in the atmospheric wind tunnel of the National Advisory Committee for Aeronautics. The models were arranged in such a manner as to make possible a determination of the effects of variations in tip shape, aspect ratio, flap setting, stagger, gap, decalage, sweep back, and airfoil profile. The arrangements represented most of the types of wing systems in use on modern airplanes" (p. 3).
The Design of Airplane Wing Ribs
"The purpose of this investigation was to obtain information for use in the design of truss and plywood forms, particularly with reference to wing ribs. Tests were made on many designs of wing ribs, comparing different types in various sizes. Many tests were also made on parallel-chord specimens of truss and plywood forms in place of the actual ribs and on parts of wing ribs, such as truss diagonals and sections of cap strips" (p. 223).
Airfoil Pressure Distribution Investigation in the Variable Density Wind Tunnel
Report presents the results of wind tunnel tests of pressure distribution measurements over one section each of six airfoils. Pressure distribution diagrams, as well as the integrated characteristics of the airfoils, are given for both a high and a low dynamic scale or, Reynolds number VL/V, for comparison with flight and other wind-tunnel tests, respectively. It is concluded that the scale effect is very important only at angles of attack near the burble.
Aircraft Accidents: Method of Analysis
The revised report includes the chart for the analysis of aircraft accidents, combining consideration of the immediate causes, underlying causes, and results of accidents, as prepared by the special committee, with a number of the definitions clarified. A brief statement of the organization and work of the special committee and of the Committee on Aircraft Accidents; and statistical tables giving a comparison of the types of accidents and causes of accidents in the military services on the one hand and in civil aviation on the other, together with explanations of some of the important differences noted in these tables.
A Method of Calculating the Ultimate Strength of Continuous Beams
The purpose of this study was to investigate the strength of continuous beams after the elastic limit has been passed. As a result, a method of calculation, which is applicable to maximum load conditions, has been developed. The method is simpler than the methods now in use and it applies properly to conditions where the present methods fail to apply.
The Pressure Distribution Over the Wings and Tail Surfaces of a PW-9 Pursuit Airplane in Flight
This report presents the results of an investigation to determine (1) the magnitude and distribution of aerodynamic loads over the wings and tail surfaces of a pursuit-type airplane in the maneuvers likely to impose critical loads on the various subassemblies of the airplane structure, (2) To study the phenomenon of center of pressure movement and normal force coefficient variation in accelerated flight, and (3) to measure the normal accelerations at the center of gravity, wing-tip, and tail, in order to determine the nature of the inertia forces acting simultaneously with the critical aerodynamic loads. The results obtained throw light on a number of important questions involving structural design.
Strength of Welded Joints in Tubular Members for Aircraft
"The object of this investigation is to make available to the aircraft industry authoritative information on the strength, weight, and cost of a number of types of welded joints. This information will, also, assist the aeronautics branch in its work of licensing planes by providing data from which the strength of a given joint may be estimated. As very little material on the strength of aircraft welds has been published, it is believed that such tests made by a disinterested governmental laboratory should be of considerable value to the aircraft industry" (p. 323).
Comparative flight performance with an NACA Roots supercharger and a turbocentrifugal supercharger
This report presents the comparative flight results of a roots supercharger and a turbocentrifugal supercharger. The tests were conducted using a modified DH-4M2 airplane. The rate of climb and the high speed in level flight of the airplane were obtained for each supercharger from sea level to the ceiling. The unsupercharged performance with each supercharger mounted in place was also determined. The results of these tests show that the ceiling and rate of climb obtained were nearly the same for each supercharger, but that the high speed obtained with the turbocentrifugal was better than that obtained with the roots. The high-speed performance at 21,000 feet was 122 and 142 miles per hour for the roots and turbocentrifugal, respectively.
Temperature coefficient of the modulus of rigidity of aircraft instrument diaphragm and spring materials
Experimental data are presented on the variation of the modulus of rigidity in the temperature range -20 to +50 degrees C. of a number of metals which are of possible use for elastic elements for aircraft and other instruments. The methods of the torsional pendulum was used to determine the modulus of rigidity and its temperature coefficient for aluminum, duralumin, monel metal, brass, phosphor bronze, coin silver, nickel silver, three high carbon steels, and three alloy steels. It was observed that tensile stress affected the values of the modulus by amounts of 1 per cent or less.
An Extended Theory of Thin Airfoils and Its Application to the Biplane Problem
"The report presents a new treatment, due essentially to von Karman, of the problem of the thin airfoil. The standard formulae for the angle of zero lift and zero moment are first developed and the analysis is then extended to give the effect of disturbing or interference velocities, corresponding to an arbitrary potential flow, which are superimposed on a normal rectilinear flow over the airfoil. An approximate method is presented for obtaining the velocities induced by a 2-dimensional airfoil at a point some distance away" (p. 637).
An Investigation of the Effectiveness of Ignition Sparks
"The effectiveness of ignition sparks was determined by measuring the volume (or mass) of hydrogen and of oxygen which combines at low pressures. The sparks were generated by a magneto and an ignition spark coil. It was found that with constant energy the amount of reaction increases as the capacitance component of the spark increases" (p. 575).
Pressure distribution over a symmetrical airfoil section with trailing edge flap
"Measurements were made to determine the distribution of pressure over one section of an R. A. F. 30 (symmetrical) airfoil with trailing edge flaps. In order to study the effect of scale measurements were made with air densities of approximately 1 and 20 atmospheres. Isometric diagrams of pressure distribution are given to show the effect of change in incidence, flap displacement, and scale upon the distribution. Plots of normal force coefficient versus angle of attack for different flap displacements are given to show the effect of a displaced flap" (p. 589).
Experimental determination of jet boundary corrections for airfoil tests in four open wind tunnel jets of different shapes
"This experimental investigation was conducted primarily for the purpose of obtaining a method of correcting to free air conditions the results of airfoil force tests in four open wind tunnel jets of different shapes. Tests were also made to determine whether the jet boundaries had any appreciable effect on the pitching moments of a complete airplane model. Satisfactory corrections for the effect of the boundaries of the various jets were obtained for all the airfoils tested, the span of the largest being 0.75 of the jet width" (p. 609).
Dynamic and flight tests on rubber-cord and oleo-rubber-disk landing gears for an F6C-4 airplane
The investigation described in this report was conducted for the purpose of comparing an oleo-rubber-disk and a rubber-cord landing gear, built for use on an F6C-4 airplane. The investigation consisted of drop tests under various loading conditions and flight tests on an F6C-4 airplane. In the drop tests the total work done on each gear and the work done on each of the shock-absorbing units were determined. For both drop tests and flight tests the maximum loads and accelerations were determined. The comparative results showed that the oleo gear was slightly superior in reducing the ordinary landing shocks, that it had a greater capacity for work, and that it was very superior in the reduction of the rebound. The results further showed that for drops comparable to very severe landings, the rubber-cord gear was potentially more effective as a shock-reducing mechanism. However, due to the construction of this chassis, which limited the maximum elongation of the cords, this gear was incapable of withstanding as severe tests as the oleo gear. The action of the oleo gear was greatly inferior to the action of an ideal gear. The maximum accelerations encountered during the flight tests for severe landings were 3.64g for the rubber-cord gear and 2.27g for the oleo gear. These were less than those experienced in free drops of 7 inches on either gear.
Pressure Fluctuations in a Common-Rail Fuel Injection System
This report presents the results of an investigation to determine experimentally the instantaneous pressures at the discharge orifice of a common-rail fuel injection system in which the timing valve and cut-off valve were at some distance from the automatic fuel injection valve, and also to determine the methods by which the pressure fluctuations could be controlled. The results show that pressure wave phenomena occur between the high-pressure reservoir and the discharge orifice, but that these pressure waves can be controlled so as to be advantageous to the injection of the fuel. The results also give data applicable to the design of such an injection system for a high-speed compression-ignition engine.
Pressure Distribution Over a Thick, Tapered and Twisted Monoplane Wing Model-N.A.C.A. 81-J
"This reports presents the results of pressure distribution tests on a thick, tapered and twisted monoplane wing model. The investigation was conducted for the purpose of obtaining data on the aerodynamic characteristics of the new wing and to provide additional information suitable for use in the design of tapered cantilever wings. The tests included angles of attack up to 90 degrees. The span loading over the wing was approximately of elliptical shape, which gave rise to relatively small bending moments about the root" (p. 97).
Maneuverability investigation of the F6C-3 airplane with special flight instruments
"This investigation was made for the purpose of obtaining information on the maneuverability of the F6C-3 airplane. It is the first of a series of similar investigations to be conducted on a number of military airplanes for the purpose of comparing the abilities of these airplanes to maneuver, and also to establish a fund of quantitative data which may be used in formulating standards of comparison for rating the maneuverability of any airplane. A large part of this initial investigation was necessarily devoted to the development and trial of methods suitable for use in subsequent investigations of this nature" (p. 117).
The Gaseous Explosive Reaction: The Effect of Pressure on the Rate of Propagation of the Reaction Zone and Upon the Rate of Molecular Transformation
This study of gaseous explosive reaction has brought out a number of important fundamental characteristics of the explosive reaction indicating that the basal processes of the transformation are much simpler and corresponds more closely to the general laws and principles of ordinary transformations than is usually supposed. The report calls attention to the point that the rate of molecular transformation within the zone was found in all cases to be proportional to pressure, that the transformation within the zone is the result of binary impacts. This result is of unusual interest in the case of the reaction of heavy hydrocarbon fuels and the reaction mechanism proposed by the recent kinetic theory of chain reactions.
A new chart for estimating the absolute ceiling of an airplane
This report is concerned with the derivation of a chart for estimating the absolute ceiling of an airplane. This chart may be used in conjunction with the usual curves of power required and power available as an accurate substitute for extended calculation, or it may be used in the estimation of absolute ceiling when power curves are not available.
Pressure distribution over the fuselage of a PW-9 pursuit airplane in flight
"This report presents the results obtained from pressure distribution tests on the fuselage of a PW-9 pursuit airplane in a number of conditions of flight. The investigation was made to determine the contribution of the fuselage to the total lift in conditions considered critical for the wing structure, and also to determine whether the fuselage loads acting simultaneously with the maximum tail loads were of such a character as to be of concern with respect to the structural design of other parts of the airplane. The results show that the contribution of the fuselage toward the total lift is small on this airplane" (p. 327).
Effect of variation of chord and span of ailerons on hinge moments at several angles of pitch
This report presents the results of an investigation of the hinge moments of ailerons of various chords and spans on two airfoils having the Clark Y and USA-27 wing sections, supplementing the investigations described in NACA-TR-298 and NACA-TR-343, of the rolling and yawing moments due to similar ailerons on these two airfoil sections. The measurements were made at various angles of pitch, but at zero angle of roll and yaw, the wing chord being set at an angle of +4 degrees to the fuselage axis.
Rolling Moments Due to Rolling and Yaw for Four Wing Models in Rotation
"This report presents the results of a series of autorotation and torque tests on four different rotating wing systems at various rates of roll and at several angles of yaw. The investigation covered an angle of attack range up to 90 degrees and angles of yaw of 0 degree, 5 degrees, 10 degrees, and 20 degrees. The tests were made in a 5-foot, closed-throat atmospheric wind tunnel. The object of the tests was primarily to determine the effects of various angles of yaw on the rolling moments of the rotating wings up to large angles of attack" (p. 301).
Coefficients of discharge of fuel-injection nozzles for compression-ignition engines
"This report presents the results of an investigation to determine the coefficients of discharge of nozzles with small, round orifices of the size used with high-speed compression-ignition engines. The injection pressures and chamber back pressures employed were comparable to those existing in compression-ignition engines during injection. The construction of the nozzles was varied to determine the effect of the nozzle design on the coefficient. Tests were also made with nozzles assembled in an automatic injection valve, both with a plain and with a helically grooved stem" (p. 193).
Some approximate equations for the standard atmosphere
This report contains the derivation of a series of simple approximate equations for density ratios and for the pressure ratio in the standard atmosphere. The accuracy of the various equations is discussed and the limits of applications are given. Several of these equations are in excellent agreement with the standard values.
A method of flight measurement of spins
A method is described involving the use of recording turn meters and accelerometers and a sensitive altimeter, by means of which all of the physical quantities necessary for the complete determination of the flight path, motion, attitude, forces, and couples of a fully developed spin can be obtained in flight. Data are given for several spins of two training type airplanes which indicate that the accuracy of the results obtained with the method is satisfactory.
Comparison of full-scale propellers having R.A.F.-6 and Clark Y airfoil sections
In this report the efficiencies of two series of propellers having two types of blade sections are compared. Six full-scale propellers were used, three having R. A. F.-6 and three Clark Y airfoil sections with thickness/chord ratios of 0.06, 0.08, and 0.10. The propellers were tested at five pitch setting, which covered the range ordinarily used in practice. The propellers having the Clark Y sections gave the highest peak efficiency at the low pitch settings. At the high pitch settings, the propellers with R. A. F.-6 sections gave about the same maximum efficiency as the Clark Y propellers and were more efficient for the conditions of climb and take-off.
Static, Drop, and Flight Tests on Musselman Type Airwheels
The purpose of this investigation was to obtain quantitative information on the shock-reducing and energy-dissipating qualities of a set of 30 by 13-6 Musselman type airwheels. The investigation consisted of static, drop, and flight tests. The static tests were made with inflation pressures of approximately 0, 5, 10, 15, 20, and 25 pounds per square inch and loadings up to 9,600 pounds.
Present Status of Aircraft Instruments
This report gives a brief description of the present state of development and of the performance characteristics of instruments included in the following group: speed instruments, altitude instruments, navigation instruments, power-plant instruments, oxygen instruments, instruments for aerial photography, fog-flying instruments, general problems, summary of instrument and research problems. The items considered under performance include sensitivity, scale errors, effects of temperature and pressure, effects of acceleration and vibration, time lag, damping, leaks, elastic defects, and friction.
Elastic Instability of Members Having Sections Common in Aircraft Construction
"Two fundamental problems of elastic stability are discussed in this report. In part one formulas are given for calculating the critical stress at which a thin, outstanding flange of a compression member will either wrinkle into several waves or form into a single half wave and twist the member about its longitudinal axis. In part two the lateral buckling of beams is discussed" (p. 373).
Full-scale tests of metal propellers at high tip speeds
This report describes tests of 10 full-scale metal propellers of several thickness ratios at various tip speeds up to 1,350 feet per second. The results indicate no loss of efficiency up to tip speeds of approximately 1,000 feet per second. Above this tip speed the loss is at a rate of about 10 per cent per 100 feet per second increase relative to the efficiency at the lower speeds for propellers of pitch diameter ratios 0.3 to 0.4. Propellers having sections of small thickness ratio can be run at slightly higher speeds than thick ones before beginning to lose efficiency.
Maneuverability investigation of an F6C-4 fighting airplane
"In order to compare the relative maneuverability of two fighting airplanes and to accumulate additional data to assist in establishing a satisfactory criterion for the maneuverability of any airplane, the National Advisory Committee for Aeronautics has conducted maneuverability investigations on the F6C-3 (water-cooled engine) and the F6C-4 (air-cooled engine) airplanes. The investigation made on the F6C-3 airplane was reported in NACA-TR-369. This report contains the results of the investigation made on the F6C-4 airplane" (p. 475).
The Design and Development of an Automatic Injection Valve With an Annular Orifice of Varying Area
The purpose of this investigation was to provide an automatic injection valve of simple construction which would produce a finely atomized oil spray of broad cone angle and would fulfill the requirements of fuel injection in aircraft oil engines. The injection valve designed has only six parts - i. e., two concentric nozzle tubes flared at one end, two body parts, and two nuts. Analysis and engine tests indicate that the fuel spray from this type of injection valve has characteristics which reduce the time lag of autoignition and promote efficient combustion in high-speed oil engines.
On the Theory of Wing Sections With Particular Reference to the Lift Distribution
This report gives a simple and exact method of calculating the lift distribution on thin wing sections. The most essential feature of the new theory is the introduction of an "ideal angle of attack," this angle being defined as that at which the flow enters the leading edge smoothly or, more precisely, as the angle of attack at which the lift at the leading edge equals zero. The lift distribution at this particular angle is shown to be a characteristic property of the section and has been termed the "basic distribution."
A proof of the theorem regarding the distribution of lift over the span for minimum induced drag
The proof of the theorem that the elliptical distribution of lift over the span is that which will give rise to the minimum induced drag has been given in a variety of ways, generally speaking too difficult to be readily followed by the graduate of the average good technical school of the present day. In the form of proof this report makes an effort to bring the matter more readily within the grasp of this class of readers.
Reduction of turbulence in wind tunnels
From Summary: "A brief nonmathematical outline is given of modern views as to the nature of the effect of turbulence, and their bearing on the desirability of designing wind tunnels for small or large turbulence. Experiments made on a particular wind tunnel for the purpose of reducing the turbulence are described, to illustrate the influence of certain factors on the magnitude of the turbulence. Moderate changes in the size, shape, and wall thickness of cells of the honeycomb were found to have little effect. The addition of a room honeycomb at the entrance was also of little value in reducing the turbulence."
Strength of Rectangular Flat Plates Under Edge Compression
"Flat rectangular plates of duralumin, stainless iron, monel metal, and nickel were tested under loads applied at two opposite edges and acting in the plane of the plate. The edges parallel to the direction of loading were supported in V grooves. The plates were all 24 inches long and varied in width from 4 to 24 inches by steps of 4 inches, and in thickness from 0.015 to 0.095 inch by steps of approximately 0.015 inch. There were also a few 1, 2, 3, and 6 inch wide specimens" (p. 519).
Theory of Wing Sections of Arbitrary Shape
"This paper presents a solution of the problem of the theoretical flow of a frictionless incompressible fluid past airfoils of arbitrary forms. The velocity of the 2-dimensional flow is explicitly expressed for any point of the surface, and for any orientation, by an exact expression containing a number of parameters which are functions of the form only and which may be evaluated by convenient graphical methods. The method is particularly simple and convenient for bodies of streamline forms. The results have been applied to typical airfoils and compared with experimental data" (p. 229).
Wind-Tunnel Tests on Airfoil Boundary Layer Control Using a Backward-Opening Slot (1931)
"This report presents the results of an investigation to determine the effect of boundary layer control on the lift and drag of an airfoil. Boundary layer control was accomplished by means of a backward-opening slot in the upper surface of the hollow airfoil. Air was caused to flow through this slot by a pressure which was maintained inside the airfoil by a blower. Various slot locations, slot openings, and wing pressures were used" (p. 3).
The Comparative Performance of Superchargers
"This report presents a comparison of superchargers on the basis of the power required to compress the air at a definite rate, and on the basis of the net engine power developed at altitudes from 0 to 40,000 feet. The investigation included geared centrifugal, turbine-driven centrifugal, roots, and vane-type superchargers. It also includes a brief discussion of the mechanical limitations of each supercharger and explains how the method of control affects the power requirements" (p. 425).
A method for computing leading-edge loads
From Summary: "In this report a formula is developed that enables the determination of the proper design load for the portion of the wing forward of the front spar. The formula is inherently rational in concept, as it takes into account the most important variables that affect the leading-edge load, although theoretical rigor has been sacrificed for simplicity and ease of application. Some empirical corrections, based on pressure distribution measurements on the PW-9 and M-3 airplanes have been introduced to provide properly for biplanes. Results from the formula check experimental values in a variety of cases with good accuracy in the critical loading conditions. The use of the method for design purposes is therefore felt to be justified and is recommended."
The effect of small angles of yaw and pitch on the characteristics of airplane propellers
This report presents the results of wind tunnel tests to determine the effect on the characteristics of a propeller of inclining the propeller axis at small angles to the relative wind. Tests were made of a full-scale propeller and fuselage combination at four angles of yaw (0 degree, +5 degrees, +10 degrees, +15 degrees), and of a model propeller, nacelle, and wing combination of five angles of pitch (-5 degrees, 0 degree, +5 degrees, +10 degrees and +15 degrees). The results of the full-scale tests of a propeller and fuselage, without a wing, show that the effect on the propeller performance is small. Similar results are shown by the model test data except that where the propeller is directly in front of the wing there is an appreciable decrease in effective thrust and propulsive efficiency with increase of angle of pitch.
Back to Top of Screen