National Advisory Committee for Aeronautics (NACA) - 1,423 Matching Results

Search Results

On a New Method for Calculating the Potential Flow Past a Body of Revolution
"A new method is presented for obtaining the velocity potential of the flow about a body of revolution moving uniformly in the direction of its axis of symmetry in a fluid otherwise at rest. This method is based essentially on the fact that the form of the differential equation for the velocity potential is invariant with regard to conformal transformation of the meridian plane. By means of the conformal transformation of the meridian profile into a circle a system of orthogonal curvilinear coordinates is obtained, the main feature of which is that one of the coordinate lines is the meridian profile itself" (p. 7).
Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple
Report presents the results of a thermocouple installed in the crown of a sodium-cooled exhaust valve. The valve was tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 degrees F. was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 r.p.m.
Requirements for Satisfactory Flying Qualities of Airplanes
Report discusses the results of an analysis of available data to determine what measured characteristics are significant in defining satisfactory flying qualities, what characteristics are reasonable to require of an airplane, and what influence the various design features have on the observed flying qualities.
The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders
Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.
Performance of NACA eight-stage axial-flow compressor designed on the basis of airfoil theory
"The NACA has conducted an investigation to determine the performance that can be obtained from a multistage axial-flow compressor based on airfoil research. A theory was developed; an eight-stage axial-flow compressor was designed, constructed, and tested. The performance of the compressor was determined for speeds from 5000 to 14,000 r.p.m with varying air flow at each speed" (p. 81).
Derivation of charts for determining the horizontal tail load variation with any elevator motion
From Summary: "The equations relating the wing and tail loads are derived for a unit elevator displacement. These equations are then converted into a nondimensional form and charts are given by which the wing- and tail-load-increment variation may be determined under dynamic conditions for any type of elevator motion and for various degrees of airplane stability. In order to illustrate the use of the charts, several examples are included in which the wing and tail loads are evaluated for a number of types of elevator motion. Methods are given for determining the necessary derivatives from results of wind-tunnel tests when such tests are available."
Identification of knock in NACA high-speed photographs of combustion in a spark-ignition engine
Report presents the results of a study of combustion in a spark-ignition engine given in NACA Technical Reports 704 and 727. The present investigation was made with the NACA high-speed motion-picture camera, operating at 40,000 photographs a second, and with a cathode-ray oscillograph operating on a piezoelectric pick-up in the combustion chamber. Photographs are presented showing that the origin of knock is not necessarily in the end gas. The data obtained indicates that knock takes place only in a part of the cylinder charge which has been previously ignited either by autoignition or by the passage of the flame fronts but which has not burned to completion. Mottled regions in the high-speed Schlieren photographs are demonstrated to represent combustion regions.
A Theoretical Investigation of the Lateral Oscillations of an Airplane With Free Rudder With Special Reference to the Effect of Friction
"Charts showing the variation in dynamic stability with the rudder hinge-moment characteristics are presented. A stabilizing rudder floating tendency combined with a high degree of aerodynamic balance is shown to lead to oscillations of increasing amplitude. This dynamic instability is increased by viscous-friction in the rudder control system" (p. 147).
Tests of Airfoils Designed to Delay the Compressibility Burble
"Fundamental investigations of compressibility phenomena for airfoils have shown that serious adverse changes of aerodynamic characteristics occur as the local speed over the surface exceeds the local speed of sound. These adverse changes have been delayed to higher free-stream speeds by development of suitable airfoil shapes. The method of deriving such airfoil shapes is described, and aerodynamic data for a wide range of Mach numbers obtained from tests of these airfoils in the Langley 24-inch high-speed tunnel are presented" (p. 1).
The Theory of Propellers 2: Method for Calculating the Axial Interference Velocity
"A technical method is given for calculating the axial interference velocity of a propeller. The method involves the use of certain weight functions P, Q, and F. Numerical values for the weight functions are given for two-blade, three-blade, and six-blade propellers" (p. 1).
The Theory of Propellers 3: The Slipstream Contraction With Numerical Values for Two-Blade and Four-Blade Propellers
"As the conditions of the ultimate wake are concerned both theoretically and practically, the magnitude of the slipstream contraction has been calculated. It will be noted that the contraction in a representative case is of the order of only 1 percent of the propeller diameter. In consequence, all calculations need involve only first-order effects. Curves and tables are given for the contraction coefficient of two-blade and four-blade propellers for various values of the advance ratio; the contraction coefficient is defined as the contraction in the diameter of the wake helix in terms of the wake diameter at infinity" (p. 1).
The Theory of Propellers 4: Thrust, Energy, and Efficiency Formulas for Single and Dual Rotating Propellers With Ideal Circulation Distribution
"Simple and exact expressions are given for the efficiency of single and dual rotating propellers with ideal circulation distribution as given by the Goldstein functions for single-rotating propellers and by the new functions for dual-rotating propellers from part I of the present series. The efficiency is shown to depend primarily on a defined load factor and, to a very small extent, on an axial loss factor. Tables and charts are included for practical use of the results. The present paper is the fourth in a series on the theory of propellers" (p. 99).
The Effect of Increased Cooling Surface on Performance of Aircraft-Engine Cylinders as Shown by Tests of the NACA Cylinder
A method of constructing fins of nearly optimum proportions has been developed by the NACA to the point where a cylinder has been manufactured and tested. Data were obtained on cylinder temperature for a wide range of inlet-manifold pressures, engine speeds, and cooling-pressure differences. The results indicate that an improvement of 40 percent in the outside-wall heat-transfer coefficient could be realized on the present NACA cylinder by providing a thermal bond equivalent to that of an integral fin-cylinder wall combination between the preformed fins and the cast cylinder wall" (p. 107).
Compressible potential flow with circulation about a circular cylinder
"The potential function for flow, with circulation, of a compressible fluid about a circular cylinder is obtained in series form including terms of the orders of m(4) where m is the Mach number of the free stream. The resulting equations are used to obtain pressure coefficients as a function of Mach number at a point on the surface of the cylinder for different values of circulation. The coefficients derived are compared with the Glauert-Prandtl and Karman-Tsien approximations which are functions of the pressure coefficients of an incompressible fluid" (p. 129).
Wind-tunnel procedure for determination of critical stability and control characteristics of airplanes
This report outlines the flight conditions that are usually critical in determining the design of components of an airplane which affect its stability and control characteristics. The wind-tunnel tests necessary to determine the pertinent data for these conditions are indicated, and the methods of computation used to translate these data into characteristics which define the flying qualities of the airplane are illustrated.
Wall interference in a two-dimensional-flow wind tunnel, with consideration of the effect of compressibility
From Summary: "Theoretical tunnel-wall corrections are derived for an airfoil of finite thickness and camber in a two-dimensional-flow wind tunnel. The theory takes account of the effects of the wake of the airfoil and of the compressibility of the fluid, and is based upon the assumption that the chord of the airfoil is small in comparison with the height of the tunnel. Consideration is given to the phenomenon of choking at high speeds and its relation to the tunnel-wall corrections. The theoretical results are compared with the small amount of low-speed experimental data available and the agreement is seen to be satisfactory, even for relatively large values of the chord-height ratio."
Compressibility and Heating Effects on Pressure Loss and Cooling of a Baffled Cylinder Barrel
"Theoretical investigations have shown that, because air is compressible, the pressure-drop requirements for cooling an air-cooled engine will be much greater at high altitudes and high speeds than at sea level and low speeds. Tests were conducted by the NACA to obtain some experimental confirmation of the effect of air compressibility on cooling and pressure loss of a baffled cylinder barrel and to evaluate various methods of analysis. The results reported in the present paper are regarded as preliminary to tests on single-cylinder and multicylinder engines. Tests were conducted over a wide range of air flows and density altitudes" (p. 1).
Intercooler cooling-air weight flow and pressure drop for minimum drag loss
An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.
Preknock vibrations in a spark-ignition engine cylinder as revealed by high-speed photography
"The high-speed photographic investigation of the mechanics of spark-ignition engine knock recorded in three previous reports has been extended with use of the NACA high-speed camera and combustion apparatus with a piezoelectric pressure pickup in the combustion chamber. The motion pictures of knocking combustion were taken at the rate of 40,000 frames per second. Existence of the preknock vibrations in the engine cylinder suggested in Technical Report no.727 has been definitely proved and the vibrations have been analyzed both in the high-speed motion pictures and the pressure traces" (p. 223).
Performance of Blowdown Turbine Driven by Exhaust Gas of Nine-Cylinder Radial Engine
"An investigation was made of an exhaust-gas turbine having four separate nozzle boxes each covering a 90 degree arc of the nozzle diaphragm and each connected to a pair of adjacent cylinders of a nine-cylinder radial engine. This type of turbine has been called a "blowdown" turbine because it recovers the kinetic energy developed in the exhaust stacks during the blowdown period, that is the first part of the exhaust process when the piston of the reciprocating engine is nearly stationary. The purpose of the investigation was to determine whether the blow turbine could develop appreciable power without imposing any large loss in engine power arising from restriction of the engine exhaust by the turbine" (p. 243).
A Theoretical Investigation of the Rolling Oscillations of an Airplane With Ailerons Free
"An analysis is made of the stability of an airplane with ailerons free, with particular attention to the motions when the ailerons have a tendency to float against the wind. The present analysis supersedes the aileron investigation contained in NACA Technical Report no. 709. The equations of motion are first written to include yawing and sideslipping, and it is demonstrated that the principal effects of freeing the ailerons can be determined without regard to these motions" (p. 255).
On the flow of a compressible fluid by the hodograph method 2: fundamental set of particular flow solutions of the Chaplygin differential equation
From Summary: "The differential equation of Chaplygin's jet problem is utilized to give a systematic development of particular solutions of the hodograph flow equations, which extends the treatment of Chaplygin into the supersonic range and completes the set of particular solutions. The particular solutions serve to place on a reasonable basis the use of velocity correction formulas for the comparison of incompressible and compressible flows. It is shown that the geometric-mean type of velocity correction formula introduced in part I has significance as an over-all type of approximation in the subsonic range."
Flight Studies of the Horizontal-Tail Loads Experienced by a Fighter Airplane in Abrupt Maneuvers
Field measurements were made on a fighter airplane to determine the approximate magnitude of the horizontal tail loads in accelerated flight. In these flight measurements, pressures at a few points were used as an index of the tail loads by correlating these pressures with complete pressure-distribution data obtained in the NACA full-scale tunnel. In addition, strain gages and motion pictures of tail deflections were used to explore the general nature and order of magnitude of fluctuating tail loads in accelerated stalls.
The Flow of a Compressible Fluid Past a Circular Arc Profile
"The Ackeret iteration process is utilized to obtain higher approximations than that of Prandtl and Glauert for the flow of a compressible fluid past a circular arc profile. The procedure is to expand the velocity potential in a power series of the camber coefficient. The first two terms of the development correspond to the Prandtl-Glauert approximation and yield the well-known correction to the circulation about the profile" (p. 385).
An Investigation of Backflow Phenomenon in Centrifugal Compressors
Report presents the results of an investigation conducted to determine the nature and the extent of the reversal of flow, which occurs at the inlet of centrifugal compressors over a considerable portion of the operating range. Qualitative studies of this flow reversal were made by lampblack patterns taken on a mixed-flow-type impeller and by tuft studies made on a conventional centrifugal compressor. Quantitative studies were made on a compressor specially designed to enable survey of angularity of flow, static and total pressures, and temperatures to be taken very close to the impeller front housing.
A method of analysis of V-G records from transport operations
A method has been developed for interpreting v-g records taken during the course of commercial transport operation. This method involves the utilization of fairly simple statistical procedures to obtain "flight envelopes," which predict that, on the average, in a stated number of flight hours, one value of airspeed will exceed the envelope, and one positive and one negative acceleration increment will exceed the envelope with equal probability of being experienced at any airspeed. Comparison with the actual data obtained from various airplanes and from various airlines indicates that these envelopes predict the occurrences of large values of acceleration and airspeed with a high degree of accuracy.
A method for the calculation of external lift, moment, and pressure drag of slender open-nose bodies of revolution at supersonic speeds
An approximate method is presented for the calculation of the external lift, moment, and pressure drag of slender open-nose bodies of revolution of supersonic speeds. The lift, moment, and pressure drag of a typical ram-jet body shape are calculated at Mach numbers 1.45, 1.60, 1.75, and 3.00; and the lift and moment results are compared with available experimental data. The agreement of the calculated lift and moment data with the experimental data is excellent. The pressure-drag comparison was not presented because of the uncertainty of the amount of skin-friction drag present in the experimental results.
Principles of Moment Distribution Applied to Stability of Structures Composed of Bars or Plates
"The principles of the cross method of moment distribution, which have previously been applied to the stability of structures composed of bars under axial load, are applied to the stability of structures composed of long plates under longitudinal load. A brief theoretical treatment of the subject, as applied to structures composed of either bars or plates, is included, together with an illustrative example for each of these two types of structure. An appendix presents the derivation of the formulas for the various stiffnesses and carry-over factors used in solving problems in the stability of structures composed of long plates" (p. 57).
Preignition-limited performance of several fuels
Preignition-limited performance data were obtained on a supercharged CFR engine at two sets of operating conditions over a wide range of fuel-air ratios to determine the preignition characteristics for the following five fuels: s-3 reference fuel, s-3 plus 4 ml. tel per gallon, afd-33(140-p), benzene, and diisobutylene. Maximum thermal-plug temperatures at constant intake-air pressures were also determined to correlate the preignition characteristics of each fuel with its ability to increase general engine-temperature levels. Additional runs were made to compare the preignition-limited performance of triptane, triptane plus 4 ml. tel per gallon, and an-f-28r fuel.
Knock-limited performance of several internal coolants
The effect of internal cooling on the knock-limited performance of an-f-28 fuel was investigated in a CFR engine, and the following internal coolants were used: (1) water, (2), methyl alcohol-water mixture, (3) ammonia-methyl alcohol-water mixture, (4) monomethylamine-water mixture, (5) dimethylamine-water mixture, and (6) trimethylamine-water mixture. Tests were run at inlet-air temperatures of 150 degrees and 250 degrees F. to indicate the temperature sensitivity of the internal-coolant solutions.
Correlation of Exhaust-Valve Temperatures With Engine Operating Conditions and Valve Design in an Air-Cooled Cylinder
"A semiempirical equation correlating exhaust-valve temperatures with engine operating conditions and exhaust-valve design has been developed. The correlation is based on the theory correlating engine and cooling variables developed in a previous NACA report. In addition to the parameters ordinarily used in the correlating equation, a term is included in the equation that is a measure of the resistance of the complex heat-flow paths between the crown of the exhaust valve and a point on the outside surface of the cylinder head" (p. 103).
A general representation for axial-flow fans and turbines
A general representation of fan and turbine arrangements on a single classification chart is presented that is made possible by a particular definition of the stage of an axial-flow fan or turbine. Several unconventional fan and turbine arrangements are indicated and the applications of these arrangements are discussed.
Method of Matching Performance of Compressor Systems with that of Aircraft Power Sections
"A method is developed of easily determining the performance of a compressor system relative to that of the power section for a given altitude. Because compressors, reciprocating engines, and turbines are essentially flow devices, the performance of each of these power-plant components is presented in terms of similar dimensionless ratios. The pressure and temperature changes resulting from restrictions of the charge-air flow and from heat transfer in the ducts connecting the components of the power plant are also expressed by the same dimensionless ratios and the losses are included in the performance of the compressor" (p. 119).
Nitrited-Steel Piston Rings for Engines of High Specific Power
"Several designs of nitrided-steel piston rings were performance-tested under variable conditions of output. The necessity of good surface finish and conformity of the ring to the bore was indicated in the preliminary tests. Nitrided-steel rings of the same dimensions as cast-iron rings operating on the original piston were unsatisfactory, and the final design was a lighter, rectangular, thin-face-width ring used on a piston having a maximum cross-head area and a revised skirt shape. Results were obtained from single-cylinder and multicylinder engine runs" (p. 1).
The NACA Impact Basin and Water Landing Tests of a Float Model at Various Velocities and Weights
"The first data obtained in the United States under the controlled testing conditions necessary for establishing relationships among the numerous parameters involved when a float having both horizontal and vertical velocity contacts a water surface are presented. The data were obtained at the NACA impact basin. The report is confined to a presentation of the relationship between resultant velocity and impact normal acceleration for various float weights when all other parameters are constant" (p. 411).
An Interim Report on the Stability and Control of Tailless Airplanes
Problems relating to the stability and control of tailless airplanes are discussed in consideration of contemporary experience and practice.
Application of Spring Tabs to Elevator Controls
Equations are presented for calculating the stick-force characteristics obtained with a spring-tab type of elevator control. The main problems encountered in the design of a satisfactory elevator spring tab are to provide stick forces in the desired range, to maintain the force per g sufficiently constant throughout the speed range, to avoid undesirable "feel" of the control in ground handling or in flight at low airspeeds, and to prevent flutter. Examples are presented to show the design features of spring tabs required to solve these problems for airplanes of various sizes.
Effect of hinge-moment parameters on elevator stick forces in rapid maneuvers
"The importance of the stick force per unit normal acceleration as a criterion of longitudinal stability and the critical dependence of this gradient on elevator hinge-moment parameters have been shown in previous reports. The present report continues the investigation with special reference to transient effects for maneuvers of short duration" (p. 449).
Charts for the Determination of Wing Torsional Stiffness Required for Specified Rolling Characteristics or Aileron Reversal Speed
From Summary :"A series of charts are presented by which the wing torsional stiffness required to meet a given standard of rolling effectiveness may be quickly determined. The charts may also be used to obtain quickly the aileron reversal speed and the variation of the loss in rolling effectiveness with airspeed. The charts apply to linearly tapered wings and elliptical wings of tubular-shell construction having various aspect ratios with aileron span and location of ailerons as variables. In the derivation of the charts, induced lift effects have been taken into account and the form of the wing-torsional-stiffness curve has been assumed."
Effects of Small Angles of Sweep and Moderate Amounts of Dihedral on Stalling and Lateral Characteristics of a Wing-Fuselage Combination Equipped With Partial- and Full-Span Double Slotted Flaps
"Tests of a wing-fuselage combinations incorporating NACA 65-series airfoil sections were conducted in the NACA 19-foot pressure tunnel. The investigation included the tests with flaps neutral and with partial- and full-span double slotted flaps deflected to determine the effects of (1) variations of wing sweep between -4 degrees and 8 degrees on stalling and lateral stability and control characteristics and (2) variations of dihedral between 0 degree and 6.75 degrees on lateral stability characteristics" (p. 467).
A method for studying the hunting oscillations of an airplane with a simple type of automatic control
"A method is presented for predicting the amplitude and frequency, under certain simplifying conditions, of the hunting oscillations of an automatically controlled aircraft with lag in the control system or in the response of the aircraft to the controls. If the steering device is actuated by a simple right-left type of signal, the series of alternating fixed-amplified signals occurring during the hunting may ordinarily be represented by a "square wave." Formulas are given expressing the response to such a variations of signal in terms of the response to a unit signal" (p. 487).
NACA Investigation of a Jet-Propulsion System Applicable to Flight
"Following a brief history of the NACA investigation of jet propulsion, a discussion is given of the general investigation and analysis leading to the construction of the jet-propulsion ground-test mock-up. The results of burning experiments and of test measurements designed to allow quantitative flight performance predictions of the system are presented and correlated with calculations. These calculations are then used to determine the performance of the system on the ground and in the air at various speeds and altitudes under various burning conditions" (p. 491).
Wind-tunnel investigation of the effects of profile modification and tabs on the characteristics of ailerons on a low-drag airfoil
An investigation has been made to determine the effect of control-surface profile modifications on the aerodynamic characteristics of an NACA low-drag airfoil equipped with a 0.20-chord and a 0.15-chord aileron. Tab characteristics have been obtained for 0.20-aileron chord tabs on two of the 0.20-chord ailerons. Basic data are presented from which the effect of tabs can be calculated for specific cases. The data are sufficient for the solution of problems of fixed tabs with a differential linkage, as well as simple and spring-linked balancing tabs.
On the flow of a compressible fluid by the hodograph method 1: unification and extension of present-day results
From Summary: "Elementary basic solutions of the equations of motion of a compressible fluid in the hodograph variables are developed and used to provide a basis for comparison, in the form of velocity correction formulas, of corresponding compressible and incompressible flows. The known approximate results of Chaplygin, Von Karman and Tsien, Temple and Yarwood, and Prandtl and Glauert are unified by means of the analysis of the present paper. Two new types of approximations, obtained from the basic solutions, are introduced; they possess certain desirable features of the other approximations and appear preferable as a basis for extrapolation into the range of high stream Mach numbers and large disturbances to the main stream."
Air-Consumption Parameters for Automatic Mixture Control of Aircraft Engines
From Introduction: "The purpose of this analysis was to investigate the use of a function of intake-manifold pressure, exhaust back pressure, intake manifold temperature, and engine speed in place of a venturi as a means of measuring engine air consumption and to determine if this function is suitable for automatic mixture control."
An analysis of life expectancy of airplane wings in normal cruising flight
From Summary: "In order to provide a basis for judging the relative importance of wing failure by fatigue and by single intense gusts, an analysis of wing life for normal cruising flight was made based on data on the frequency of atmospheric gusts. The independent variables considered in the analysis included stress-concentration factor, stress-load relation, wing loading, design and cruising speeds, design gust velocity, and airplane size. Several methods for estimating fatigue life from gust frequencies are discussed."
An experimental investigation of rectangular exhaust-gas ejectors applicable for engine cooling
"An experimental investigation of rectangular exhaust-gas ejector pumps was conducted to provide data that would serve as a guide to the design of ejector applications for aircraft engines with marginal cooling. The pumping characteristics of rectangular ejectors actuated by the exhaust of a single-cylinder aircraft engine were determined for a range of ejector mixing-section area from 20 to 50 square inches, over-all length from 12 to 42 inches, aspect ratio from 1 to 5, diffusing exit area from 20 to 81 square inches, and exhaust-nozzle aspect ratio from 1 to 42" (p. 161).
Effect of body nose shape on the propulsive efficiency of a propeller
Report presents the results of an investigation of the propulsive efficiency of three adjustable propellers of 10-foot diameter operated in front of four body nose shapes, varying from streamline nose that continued through the propeller plane in the form of a large spinner to a conventional open-nose radial-engine cowling. One propeller had airfoil sections close to the hub, the second had conventional round blade shanks, and the third differed from the second only in pitch distribution. The blade-angle settings ranged from 20 degrees to 55 degrees at the 0.75 radius.
The design of fins for air-cooled cylinders
From Summary: "An analysis was made to determine the proportions of fins made of aluminum, copper, magnesium, and steel necessary to dissipate maximum quantities of heat for different fin widths, fin weights, and air-flow conditions. The analysis also concerns the determination of the optimum fin proportions when specified limits are placed on the fin dimensions. The calculation of the heat flow in the fins is based on experimentally verified, theoretical equations. The surface heat-transfer coefficients used with this equation were taken from previously reported experiments. In addition to the presentation of fin-design information, this investigation shows that optimum fin dimensions are inappreciably affected by the differences in air flow that are obtained with different air-flow arrangements or by small changes in the length of the air-flow path."
A study by high-speed photography of combustion and knock in a spark-ignition engine
"The study of combustion in a spark-ignition engine given in Technical Report no. 704 has been continued. The investigation was made with the NACA high-speed motion-picture camera and the NACA optical engine indicator. The camera operates at the rate of 40,000 photographs a second and makes possible the study of phenomena occurring in time intervals as short as 0.000025 second. Photographs are presented of combustion without knock and with both light and heavy knocks, the end zone of combustion being within the field of view" (p. 15).
Back to Top of Screen