You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Decade: 1940-1949
 Serial/Series Title: NACA Technical Reports
 Collection: National Advisory Committee for Aeronautics Collection
Accuracy of airspeed measurements and flight calibration procedures
The sources of error that may enter into the measurement of airspeed by pitot-static methods are reviewed in detail together with methods of flight calibration of airspeed installations. Special attention is given to the problem of accurate measurements of airspeed under conditions of high speed and maneuverability required of military airplanes. (author). digital.library.unt.edu/ark:/67531/metadc65478/
The additional-mass effect of plates as determined by experiments
The apparent increase in the inertia properties of a body moving in a fluid medium has been called the additional-mass effect. This report presents a resume of test procedures and results of experimental determinations of the additional-mass effect of flat plates. In addition to data obtained from various foreign sources and from a NACA investigation in 1933, the results of tests recently conducted by the National Advisory Committee for Aeronautics are included. digital.library.unt.edu/ark:/67531/metadc66368/
Aerodynamic and hydrodynamic tests of a family of models of flying hulls derived from a streamline body -- NACA model 84 series
A series of related forms of flying-boat hulls representing various degrees of compromise between aerodynamic and hydrodynamic requirements was tested in Langley Tank No. 1 and in the Langley 8-foot high-speed tunnel. The purpose of the investigation was to provide information regarding the penalties in water performance resulting from further aerodynamic refinement and, as a corollary, to provide information regarding the penalties in range or payload resulting from the retention of certain desirable hydrodynamic characteristics. The information should form a basis for over-all improvements in hull form. digital.library.unt.edu/ark:/67531/metadc60031/
Aerodynamic characteristics of horizontal tail surfaces
Collected data are presented on the aerodynamic characteristics of 17 horizontal tail surfaces including several with balanced elevators and two with end plates. Curves are given for coefficients of normal force, drag, and elevator hinge moment. A limited analysis of the results has been made. The normal-force coefficients are in better agreement with the lifting-surface theory of Prandtl and Blenk for airfoils of low aspect ratio than with the usual lifting-line theory. Only partial agreement exists between the elevator hinge-moment coefficients and those predicted by Glauert's thin-airfoil theory. digital.library.unt.edu/ark:/67531/metadc66348/
Air-consumption parameters for automatic mixture control of aircraft engines
Data obtained from Navy calibration tests of an 18-cylinder, two-row, radial engine of 3350-cubic-inch displacement and a 14-cylinder, two-row, radial engine of 2600-cubic-inch displacement (carburetor types) were analyzed to show the correlation between the air consumption of these engines and the parameters that evaluate the air consumption from intake-manifold temperature and pressure, exhaust back pressure, and engine speed. digital.library.unt.edu/ark:/67531/metadc60083/
Analysis and modification of theory for impact of seaplanes on water
An analysis of available theory on seaplane impact and a proposed modification thereto are presented. In previous methods the overall momentum of the float and virtual mass has been assumed to remain constant during the impact but the present analysis shows that this assumption is rigorously correct only when the resultant velocity of the float is normal to the keel. The proposed modification chiefly involves consideration of the fact that forward velocity of the seaplane float causes momentum to be passed into the hydrodynamic downwash (an action that is the entire consideration in the case of the planing float) and consideration of the fact that, for an impact with trim, the rate of penetration is determined not only by the velocity component normal to the keel but also by the velocity component parallel to the keel, which tends to reduce the penetration. Experimental data for planing, oblique impact, and vertical drop are used to show that the accuracy of the proposed theory is good. digital.library.unt.edu/ark:/67531/metadc60104/
Analysis and prediction of longitudinal stability of airplanes
An analysis has been made of the longitudinal stability characteristics of 15 airplanes as determined in flight. In the correlation of satisfactory and unsatisfactory characteristics with determined values, the derivative that expresses the ratio of static-restoring moments to elevator-control moments was found to represent most nearly the stability characteristics appreciated by the pilots. The analysis was extended to study the effects of various design features on the observed stability characteristics. Design charts and data are included that show the effects on longitudinal stability of relative positions of wing and tail, fuselage size and location, engine nacelles, and horizontal-tail arrangements. digital.library.unt.edu/ark:/67531/metadc66372/
Analysis of cooling limitations and effect of engine-cooling improvements on level-flight cruising performance of four-engine heavy bomber
The NACA has developed means, including an injection impeller and ducted head baffles, to improve the cooling characteristics of the 3350-cubic-inch-displacement radial engines installed in a four-engine heavy bomber. The improvements afforded proper cooling of the rear-row exhaust-valve seats for a wide range of cowl-flap angles, mixture strengths, and airplane speeds. The results of flight tests with this airplane are used as a basis for a study to determine the manner and the extent to which the airplane performance was limited by engine cooling. By means of this analysis for both the standard airplane and the airplane with engine-cooling modifications, comparison of the specific range at particular conditions and comparison of the cruising-performance limitations was made. digital.library.unt.edu/ark:/67531/metadc60155/
Analysis of effect of basic design variables on subsonic axial-flow-compressor performance
A blade-element theory for axial-flow compressors has been developed and applied to the analysis of the effects of basic design variables such as Mach number, blade loading, and velocity distribution on compressor performance. A graphical method that is useful for approximate design calculations is presented. The relations among several efficiencies useful in compressor design are derived and discussed. The possible gains in useful operating range obtainable by the use of adjustable stator blades are discussed and a rapid approximate method of calculating blade-angle resettings is shown by an example. The relative Mach number is shown to be a dominant factor in determining the pressure ratio. digital.library.unt.edu/ark:/67531/metadc60208/
Analysis of heat and compressibility effects in internal flow systems and high-speed tests of a ram-jet system
An analysis has been made by the NACA of the effects of heat and compressibility in the flow through the internal systems of aircraft. Equations and charts are developed whereby the flow characteristics at key stations in a typical internal system may be readily obtained. digital.library.unt.edu/ark:/67531/metadc60041/
Analysis of jet-propulsion-engine combustion-chamber pressure losses
The development and the use of a chart for estimating the pressure losses in jet-engine combustion chambers are described. By means of the chart, the pressure losses due to fluid friction and to momentum changes in the air flow accompanying combustion can be separately evaluated. The pressure-loss chart is based on the assumption that the pressure losses in the actual combustion chamber can be matched by those of an equivalent combustion chamber of constant cross-sectional area. The concept of the equivalent combustion chamber serves as a convenient basis for comparing the pressure-loss characteristics of combustion chambers of a variety of designs. The over-all pressure losses computed from the pressure-loss chart are within 7 percent of the experimental values for the three types of combustion chambers considered herein. digital.library.unt.edu/ark:/67531/metadc60187/
An analysis of life expectancy of airplane wings in normal cruising flight
In order to provide a basis for judging the relative importance of wing failure by fatigue and by single intense gusts, an analysis of wing life for normal cruising flight was made based on data on the frequency of atmospheric gusts. The independent variables considered in the analysis included stress-concentration factor, stress-load relation, wing loading, design and cruising speeds, design gust velocity, and airplane size. Several methods for estimating fatigue life from gust frequencies are discussed. The procedure selected for the analysis is believed to be simple and reasonably accurate, though slightly conservative. digital.library.unt.edu/ark:/67531/metadc60084/
Analysis of performance of jet engine from characteristics of components I : aerodynamic and matching characteristics of turbine component determined with cold air
The performance of the turbine component of an NACA research jet engine was investigated with cold air. The interaction and the matching of the turbine with the NACA eight-stage compressor were computed with the combination considered as a jet engine. The over-all performance of the engine was then determined. The internal aerodynamics were studied to the extent of investigating the performance of the first stator ring and its influence on the turbine performance. For this ring, the stream-filament method for computing velocity distribution permitted efficient sections to be designed, but the design condition of free-vortex flow with uniform axial velocities was not obtained. digital.library.unt.edu/ark:/67531/metadc60182/
Analysis of performance of jet engine from characteristics of components II : interaction of components as determined from engine operation
In order to understand the operation and the interaction of jet-engine components during engine operation and to determine how component characteristics may be used to compute engine performance, a method to analyze and to estimate performance of such engines was devised and applied to the study of the characteristics of a research turbojet engine built for this investigation. An attempt was made to correlate turbine performance obtained from engine experiments with that obtained by the simpler procedure of separately calibrating the turbine with cold air as a driving fluid in order to investigate the applicability of component calibration. The system of analysis was also applied to prediction of the engine and component performance with assumed modifications of the burner and bearing characteristics, to prediction of component and engine operation during engine acceleration, and to estimates of the performance of the engine and the components when the exhaust gas was used to drive a power turbine. digital.library.unt.edu/ark:/67531/metadc60242/
Analysis of spark-ignition engine knock as seen in photographs taken at 200,000 frames per second
A motion picture of the development of knock in a spark-ignition engine is presented, which consists of 20 photographs taken at intervals of 5 microseconds, or at a rate of 200,000 photographs per second, with an equivalent wide-open exposure time of 6.4 microseconds for each photograph. A motion picture of a complete combustion process, including the development of knock, taken at the rate of 40,000 photographs per second is also presented to assist the reader in orienting the photographs of the knock development taken at 200,000 frames per second. digital.library.unt.edu/ark:/67531/metadc60152/
An analysis of the dissipation of heat in conditions of icing from a section of the wing of the C-46 airplane
A method is given for calculating the temperature that a surface, heated internally by air, will assume in specified conditions of icing. The method can be applied generally to predict the performance, under conditions of icing, of the thermal system for protecting aircraft. Calculations have been made for a section of the wing of the C-46 airplane, and the results agree closely with the temperature measured. The limit of protection when the temperature of the surface reaches 32 degrees F., has been predicted for the leading edge. The temperature of the surface in conditions of icing with air at 0 degree F. also has been calculated. The effect of kinetic heating and the effect of the concentration of free water and size of droplet in the cloud are demonstrated. digital.library.unt.edu/ark:/67531/metadc60117/
An analysis of the full-floating journal bearing
An analysis of the operating characteristics of a full-floating journal bearing, a bearing in which a floating sleeve is located between the journal and bearing surfaces, is presented together with charts from which the performance of such bearings may be predicted. Examples are presented to illustrate the use of these charts and a limited number of experiments conducted upon a glass full-floating bearing are reported to verify some results of the analysis. digital.library.unt.edu/ark:/67531/metadc60167/
An analysis of the stability of an airplane with free controls
Report presents the results of an investigation made of the essentials to the stability of an airplane with free control surfaces. Calculations are based on typical airplane characteristics with certain factors varied to cover a range of current designs. Stability charts are included to show the limiting values of the aerodynamic hinge moments and the weight hinge moments of the control surfaces for various positions of the center of gravity of the airplane and for control systems with various moments of inertia. The effects of reducing the chord and of eliminating the floating tendency of the surface, of changing the wing loading, and of decreasing the radius of gyration of the airplane are also indicated. An investigation has also been made of the nature of the motion of the airplane with controls free and of the modes of instability that may occur. digital.library.unt.edu/ark:/67531/metadc66370/
Analysis of variation of piston temperature with piston dimensions and undercrown cooling
A theoretical analysis is presented that permits estimation of the changes in piston-temperature distribution induced by variations in the crown thickness, the ring-groove-pad thickness, and the undercrown surface heat-transfer coefficient. The analysis consists of the calculation of operating temperatures at various points in the piston body on the basis of the experimentally determined surface heat-transfer coefficients and boundary-region temperatures, as well as arbitrarily selected surface coefficients. Surface heat-transfer coefficients were estimated from the internal temperature gradients obtained by hardness surveys of aluminum pistons that had been operated under severe conditions in a liquid-cooled, single-cylinder, 5 1/2 by 6-inch test engine. digital.library.unt.edu/ark:/67531/metadc60203/
Analysis of wind-tunnel stability and control tests in terms of flying qualities of full-scale airplanes
The analysis of results of wind-tunnel stability and control tests of powered airplane models in terms of the flying qualities of full-scale airplanes is advocated. In order to indicated the topics upon which comments are considered desirable in the report of a wind-tunnel stability and control investigation and to demonstrate the nature of the suggested analysis, the present NACA flying-qualities requirements are discussed in relation to wind-tunnel tests. General procedures for the estimation of flying qualities from wind-tunnel tests are outlined. digital.library.unt.edu/ark:/67531/metadc60108/
An analytical method of estimating turbine performance
A method is developed by which the performance of a turbine over a range of operating conditions can be analytically estimated from the blade angles and flow areas. In order to use the method, certain coefficients that determine the weight flow and the friction losses must be approximated. The method is used to calculate the performance of the single-stage turbine of a commercial aircraft gas-turbine engine and the calculated performance is compared with the performance indicated by experimental data. For the turbine of the typical example, the assumed pressure losses and the tuning angles give a calculated performance that represents the trends of the experimental performance with reasonable accuracy. The exact agreement between analytical performance and experimental performance is contingent upon the proper selection of a blading-loss parameter. digital.library.unt.edu/ark:/67531/metadc60245/
An apparatus for measuring rates of discharge of a fuel-injection system
A portable apparatus for rapidly determining rates of discharge of a fuel-injection system is described. Satisfactory operation of this apparatus with injection-pump speeds up to 2400 r.p.m was obtained. Rate-of-discharge tests were made with several cam-plunger-valve injection systems with long injection tubes. A check valve designed to reduce secondary discharges was tested. This check valve was operated with injection-pump speeds up to 2400 r.p.m without the occurrence of large secondary discharges. digital.library.unt.edu/ark:/67531/metadc66375/
An apparatus for varying effective dihedral in flight with application to a study of tolerable dihedral on a conventional fighter airplane
An apparatus for varying effective dihedral in flight by means of servo actuation of the ailerons in response to sideslip angle is described. The results of brief flight tests of the apparatus on a conventional fighter airplane are presented and discussed. The apparatus is shown to have satisfactory simulated a wide range of effective dihedral under static and dynamic conditions. The effects of a small amount of servo lag are shown to be measurable when the apparatus is simulating small negative values of dihedral. However, these effects were not considered by the pilots to give the airplane an artificial feel. The results of an investigation employing the apparatus to determine the tolerable (safe for normal fighter operation) range of effective dihedral on the test airplane are presented. digital.library.unt.edu/ark:/67531/metadc60272/
The application of basic data on planing surfaces to the design of flying-boat hulls
Basic lift data on planing surfaces have been analyzed and the data applied to the design of flying-boat hulls. It is shown that a balance between air and water forces requires that the beam of the planing area bear a relation to the wing area that is determined by the lift coefficient of the wing and by the angle of dead rise in the planing surface. It is also shown that the fore-and-aft extent of the required planing area depends on the angle of dead rise. Failure to provide sufficient length of planing area appears to be the main reason for the poor water performance sometimes obtained when a large angle of dead rise is used. digital.library.unt.edu/ark:/67531/metadc66354/
Application of spring tabs to elevator controls
Equations are presented for calculating the stick-force characteristics obtained with a spring-tab type of elevator control. The main problems encountered in the design of a satisfactory elevator spring tab are to provide stick forces in the desired range, to maintain the force per g sufficiently constant throughout the speed range, to avoid undesirable "feel" of the control in ground handling or in flight at low airspeeds, and to prevent flutter. Examples are presented to show the design features of spring tabs required to solve these problems for airplanes of various sizes. digital.library.unt.edu/ark:/67531/metadc60069/
Application of the analogy between water flow with a free surface and two-dimensional compressible gas flow
The theory of the hydraulic analogy -- that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow -- and the limitations and conditions of the analogy are discussed. A test was run using the hydraulic analogy as applied to the flow about circular cylinders of various diameters at subsonic velocities extending into the supercritical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and air flow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods. digital.library.unt.edu/ark:/67531/metadc60180/
Application of the method of characteristics to supersonic rotational flow
A system for calculating the physical properties of supersonic rotational flow with axial symmetry and supersonic rotational flow in a two-dimensional field was determined by use of the characteristics method. The system was applied to the study of external and internal flow for supersonic inlets with axial symmetry. For a circular conical inlet the shock that occurred at the lip of the inlet became stronger as it approached the axis of the inlet and became a normal shock at the axis. The region in which strong shock occurred increased with increase of the angle of internal cone at the lip of the inlet. For an inlet with a central body the method of characteristics was applied to the design of an internal channel shape that, theoretically, results in very efficient recompression in the inlet. It was shown that if an effuser is connected with the diffuser a body of revolution with very small shock-wave drag can be determined. (author). digital.library.unt.edu/ark:/67531/metadc65467/
Application of Theodorsen's theory to propeller design
A theoretical analysis is presented for obtaining, by use of Theodorsen's propeller theory, the load distribution along a propeller radius to give the optimum propeller efficiency for any design condition. The efficiencies realized by designing for the optimum load distribution are given in graphs, and the optimum efficiency for any design condition may be read directly from the graph without any laborious calculations. Examples are included to illustrate the method of obtaining the optimum load distributions for both single-rotating and dual-rotating propellers. digital.library.unt.edu/ark:/67531/metadc60237/
Appreciation and Prediction of Flying Qualities
The material given in this report summarizes some of the results of recent research that will aid the designers of an airplane in selecting or modifying a configuration to provide satisfactory stability and control characteristics. The requirements of the NACA for satisfactory flying qualities, which specify the important stability and control characteristics of an airplane from the pilot's standpoint, are used as the main topics of the report. A discussion is given of the reasons for the requirements, of the factors involved in obtaining satisfactory flying qualities, and of the methods used in predicting the stability and control characteristics of an airplane. The material is based on lecture notes for a training course for research workers engaged in airplane stability and control investigations. digital.library.unt.edu/ark:/67531/metadc60241/
Bending and shear stresses developed by the instantaneous arrest of the root of a moving cantilever beam
A theoretical and experimental investigation has been made of the behavior of a cantilever beam in transverse motion when its root is suddenly brought to rest. Equations are given for determining the stresses, the deflections, and the accelerations that arise in the beam as a result of the impact. The theoretical equations, which have been confirmed experimentally, reveal that, at a given percentage of the distance from root to tip, the bending stresses for a particular mode are independent of the length of the beam, whereas the shear stresses vary inversely with the length. digital.library.unt.edu/ark:/67531/metadc60112/
Bending of rectangular plates with large deflections
The solution of Von Karman's fundamental equations for large deflections of plates is presented for the case of a simply supported rectangular plate under combined edge compression and lateral loading. Numerical solutions are given for square plates and for rectangular plates with a width-span ratio of 3:1. The effective widths under edge compression are compared with effective widths according to Von Karman, Bengston, Marguerre, and Cox and with experimental results by Ramberg, Mcpherson, and Levy. The deflections of a square plate under lateral pressure are compared with experimental and theoretical results by Kaiser. It is found that the effective widths agree closely with Marguerre's formula and with the experimentally observed values and that the deflections agree with the experimental results and with Kaiser's work. digital.library.unt.edu/ark:/67531/metadc59995/
Bending-torsion flutter calculations modified by subsonic compressibility corrections
A number of calculations of bending-torsion wing flutter are made at two Mach numbers, m=0 (incompressible case) and m=0.7, and results are compared. The air forces employed for the case of m=0.7 are based on Frazer's recalculation of Possio's results, which are derived on the assumption of small disturbances to the main flow. For ordinary wings of normal density and of low bending frequency in comparison with torsion frequency, the compressibility correction to the flutter speed appears to be of the order of a few percent; whereas the correction to flutter speed for high-density wing sections, such as propeller sections, and to the wing-divergence speed in general, may be based on a rule using the (1 - m(2))1/4 factor and, for m=0.7, represents a decrease of the order of 17 percent. digital.library.unt.edu/ark:/67531/metadc65464/
The calculated effect of various hydrodynamic and aerodynamic factors on the take-off of a large flying boat
Report presents the results of an investigation made to determine the influence of various factors on the take-off performance of a hypothetical large flying boat by means of take-off calculations. The factors varied in the calculations were size of hull (load coefficient), wing setting, trim, deflection of flap, wing loading, aspect ratio, and parasite drag. The take-off times and distances were calculated to the stalling speeds and the performance above these speeds was separately studied to determine piloting technique for optimum take-off. digital.library.unt.edu/ark:/67531/metadc66362/
Calculations of economy of 18-cylinder radial aircraft engine with exhaust-gas turbine geared to the crankshaft
Calculations based on dynamometer test-stand data obtained on an 18-cylinder radial engine were made to determine the improvement in fuel consumption that can be obtained at various altitudes by gearing an exhaust-gas turbine to the engine crankshaft in order to increase the engine-shaft work. digital.library.unt.edu/ark:/67531/metadc60105/
Characteristics of low-aspect-ratio wings at supercritical Mach numbers
The separation of the flow over wings precipitated by the compression shock that forms as speeds are increased into the supercritical Mach number range has imposed serious difficulties in the improvement of aircraft performance. Three difficulties rise principally as a consequence of the rapid drag rise and the loss of lift that causes serious stability changes when the wing shock-stalls. Favorable relieving effects due to the three-dimensional flow around the tips were obtained and these effects were of such magnitude that it is indicated that low-aspect-ratio wings offer a possible solution of the problems encountered. digital.library.unt.edu/ark:/67531/metadc60234/
Charts for the Determination of Wing Torsional Stiffness Required for Specified Rolling Characteristics or Aileron Reversal Speed
A series of charts are presented by which the wing torsional stiffness required to meet a given standard of rolling effectiveness may be quickly determined. The charts may also be used to obtain quickly the aileron reversal speed and the variation of the loss in rolling effectiveness with airspeed. The charts apply to linearly tapered wings and elliptical wings of tubular-shell construction having various aspect ratios with aileron span and location of ailerons as variables. In the derivation of the charts, induced lift effects have been taken into account and the form of the wing-torsional-stiffness curve has been assumed. digital.library.unt.edu/ark:/67531/metadc60072/
Charts for the minimum-weight design of 24s-t aluminum-alloy flat compression panels with longitudinal z-section stiffeners
Design charts are developed for 24s-t aluminum-alloy flat compression panels with longitudinal z-section stiffeners. These charts make possible the design of the lightest panels of this type for a wide range of design requirements. Examples of the use of the charts are given and it is pointed out on the basis of these examples that, over a wide range of design conditions, the maintenance of buckle-free surfaces does not conflict with the achievement of high structural efficiency. The achievement of the maximum possible structural efficiency with 24s-t aluminum-alloy panels, however, requires closer stiffener spacings than those now in common use. digital.library.unt.edu/ark:/67531/metadc60110/
Comparison of several methods of predicting the pressure loss at altitude across a baffled aircraft-engine cylinder
Several methods of predicting the compressible-flow pressure loss across a baffled aircraft-engine cylinder were analytically related and were experimentally investigated on a typical air-cooled aircraft-engine cylinder. Tests with and without heat transfer covered a wide range of cooling-air flows and simulated altitudes from sea level to 40,000 feet. Both the analysis and the test results showed that the method based on the density determined by the static pressure and the stagnation temperature at the baffle exit gave results comparable with those obtained from methods derived by one-dimensional-flow theory. The method based on a characteristic Mach number, although related analytically to one-dimensional-flow theory, was found impractical in the present tests because of the difficulty encountered in defining the proper characteristic state of the cooling air. Accurate predictions of altitude pressure loss can apparently be made by these methods, provided that they are based on the results of sea-level tests with heat transfer. digital.library.unt.edu/ark:/67531/metadc60153/
Comparison of wind-tunnel and flight measurements of stability and control characteristics of a Douglas A-26 airplane
Stability and control characteristics determined from tests in the Langley 19-foot pressure tunnel of a 0.2375-scale model of the Douglas XA-26 airplane are compared with those measured in flight tests of a Douglas A-26 airplane. Agreement regarding static longitudinal stability as indicated by the elevator-fixed neutral points and by the variation of elevator deflection in both straight and turning flight was found to be good except at speeds approaching the stall. At these low speeds the airplane possessed noticeably improved stability, which was attributed to pronounced stalling at the root of the production wing. The pronounced root stalling did not occur on the smooth, well-faired model wing. Elevator tab effectiveness determined from model tests agreed well with flight-test tab effectiveness, but control-force variations with speed and acceleration were not in good agreement. The use of model hinge-moment data obtained at zero sideslip appeared to be satisfactory for the determination of aileron forces in sideslip. Fairly good correlation in aileron effectiveness and control forces was obtained; fabric distortion may have been responsible to some extent for higher flight values of aileron force at high speeds. Estimation of sideslip developed in an abrupt aileron roll was fair, but determination of the rudder deflection required to maintain zero sideslip in a rapid aileron roll was not entirely satisfactory. digital.library.unt.edu/ark:/67531/metadc60836/
Compressibility and heating effects on pressure loss and cooling of a baffled cylinder barrel
Theoretical investigations have shown that, because air is compressible, the pressure-drop requirements for cooling an air-cooled engine will be much greater at high altitudes and high speeds than at sea level and low speeds. Tests were conducted by the NACA to obtain some experimental confirmation of the effect of air compressibility on cooling and pressure loss of a baffled cylinder barrel and to evaluate various methods of analysis. The results reported in the present paper are regarded as preliminary to tests on single-cylinder and multicylinder engines. Tests were conducted over a wide range of air flows and density altitudes. digital.library.unt.edu/ark:/67531/metadc60055/
Compressibility and Heating Effects on Pressure Loss and Cooling of a Baffled Cylinder Barrel
Theoretical investigations have shown that, because air is compressible, the pressure-drop requirements for cooling an air-cooled engine will be much greater at high altitudes and high speeds than at sea level and low speeds. Tests were conducted by the NACA to obtain some experimental confirmation of the effect of air compressibility on cooling and pressure loss of a baffled cylinder barrel and to evaluate various methods of analysis. The results reported in the present paper are regarded as preliminary to tests on single-cylinder and multi-cylinder engines. Tests were conducted over a wide range of air flows and density altitudes. digital.library.unt.edu/ark:/67531/metadc64949/
Compressibility effects on the longitudinal stability and control of a pursuit-type airplane as measured in flight
Measurements of the longitudinal stability and control of a pursuit-type airplane were made in flight up to a Mach number of 0.78. The data are presented in the form of curves showing the variation, with center-of-gravity position, dynamic pressure, and Mach number, of the stick-fixed and stick-free stability, control, and balance of the airplane. digital.library.unt.edu/ark:/67531/metadc60146/
Compressible potential flow with circulation about a circular cylinder
The potential function for flow, with circulation, of a compressible fluid about a circular cylinder is obtained in series form including terms of the orders of m(4) where m is the Mach number of the free stream. The resulting equations are used to obtain pressure coefficients as a function of Mach number at a point on the surface of the cylinder for different values of circulation. The coefficients derived are compared with the Glauert-Prandtl and Karman-Tsien approximations which are functions of the pressure coefficients of an incompressible fluid. For the cases considered, the values of the pressure coefficients computed from the theory were found to be somewhere between the two approximations, the first underestimating and the second overestimating it. digital.library.unt.edu/ark:/67531/metadc60051/
Consideration of dynamic loads on the vertical tail by the theory of flat yawing maneuvers
Dynamic yawing effects on vertical-tail loads are considered by a theory of flat yawing maneuvers. A comparison is shown between computed loads and the loads measured in flight on a fighter airplane. The dynamic effects were investigated on a large flying boat for both an abrupt rudder deflection and sinusoidal rudder deflection. Only a moderate amount of control deflection was found to be necessary to attain the ultimate design load on the tail. In order to take into account dynamic effects in design, specifications of yawing maneuverability or control movement are needed. digital.library.unt.edu/ark:/67531/metadc60129/
Constant-pressure combustion charts including effects of diluent addition
Charts are presented for the calculation of (a) the final temperatures and the temperature changes involved in constant-pressure combustion processes of air and in products of combustion of air and hydrocarbon fuels, and (b) the quantity of hydrocarbon fuels required in order to attain a specified combustion temperature when water, alcohol, water-alcohol mixtures, liquid ammonia, liquid carbon dioxide, liquid nitrogen, liquid oxygen, or their mixtures are added to air as diluents or refrigerants. The ideal combustion process and combustion with incomplete heat release from the primary fuel and from combustible diluents are considered. The effect of preheating the mixture of air and diluents and the effect of an initial water-vapor content in the combustion air on the required fuel quantity are also included. The charts are applicable only to processes in which the final mixture is leaner than stoichiometric and at temperatures where dissociation is unimportant. A chart is also included to permit the calculation of the stoichiometric ratio of hydrocarbon fuel to air with diluent addition. The use of the charts is illustrated by numerical examples. digital.library.unt.edu/ark:/67531/metadc60254/
Correlation of cooling data from an air-cooled cylinder and several multicylinder engines
The theory of engine-cylinder cooling developed in a previous report was further substantiated by data obtained on a cylinder from a Wright r-1820-g engine. Equations are presented for the average head and barrel temperatures of this cylinder as functions of the engine and the cooling conditions. These equations are utilized to calculate the variation in cylinder temperature with altitude for level flight and climb. A method is presented for correlating average head and barrel temperatures and temperatures at individual points on the head and the barrel obtained on the test stand and in flight. The method is applied to the correlation and the comparison of data obtained on a number of service engines. Data are presented showing the variation of cylinder temperature with time when the power and the cooling pressure drop are suddenly changed. digital.library.unt.edu/ark:/67531/metadc66343/
Correlation of cylinder-head temperatures and coolant heat rejections of a multicylinder, liquid-cooled engine of 1710-cubic-inch displacement
Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed. digital.library.unt.edu/ark:/67531/metadc60246/
Correlation of exhaust-valve temperatures with engine operating conditions and valve design in an air-cooled cylinder
A semiempirical equation correlating exhaust-valve temperatures with engine operating conditions and exhaust-valve design has been developed. The correlation is based on the theory correlating engine and cooling variables developed in a previous NACA report. In addition to the parameters ordinarily used in the correlating equation, a term is included in the equation that is a measure of the resistance of the complex heat-flow paths between the crown of the exhaust valve and a point on the outside surface of the cylinder head. A means for comparing exhaust valves of different designs with respect to cooling is consequently provided. The necessary empirical constants included in the equation were determined from engine investigations of a large air-cooled cylinder. Tests of several valve designs showed that the calculated and experimentally determined exhaust-valve temperatures were in good agreement. digital.library.unt.edu/ark:/67531/metadc60093/
Correlation of the drag characteristics of a typical pursuit airplane obtained from high-speed wind-tunnel and flight tests
In order to obtain a correlation of drag data from wind-tunnel and flight tests at high Mach numbers, a typical pursuit airplane, with the propeller removed, was tested in flight at Mach numbers up to 0.755, and the results were compared with wind-tunnel tests of a 1/3-scale model of the airplane. The tests results show that the drag characteristics of the test airplane can be predicted with satisfactory accuracy from tests in the Ames 16-foot high-speed wind tunnel of the Ames Aeronautical Laboratory at both high and low Mach numbers. It is considered that this result is not unique with the airplane. digital.library.unt.edu/ark:/67531/metadc60226/
Critical combinations of shear and transverse direct stress for an infinitely long flat plate with edges elastically restrained against rotation
An exact solution and a closely concurring approximate energy solution are given for the buckling of an infinitely long flat plate under combined shear and transverse direct stress with edges elastically restrained against rotation. It was found that an appreciable fraction of the critical stress in pure shear may be applied to the plate without any reduction in the transverse compressive stress necessary to produce buckling. An interaction formula in general use was shown to be decidedly conservative for the range in which it is supposed to apply. digital.library.unt.edu/ark:/67531/metadc60138/
FIRST PREV 1 2 3 4 5 NEXT LAST