Search Results

Earth System Governance: People, Places, and the Planet
This science plan elaborates upon the concept of Earth system governance, defined as the interrelated systems of formal and informal rules and actor-networks that are set up to steer societies towards preventing, mitigating, and adapting to environmental change within the normative context of sustainable development. The notion of governance here refers to a less hierarchical and more decentralized system than traditional governmental policy-making, inclusive of non-state actors such as non-governmental organizations, indigenous communities, and international organizations.
Global Change and Mountain Regions: The Mountain Research Initiative
The strong altitudinal gradients in mountain regions provide unique and sometimes the best opportunities to detect and analyse global change processes and phenomena. Meteorological, hydrological, cryospheric and ecological conditions change strongly over relatively short distances; thus biodiversity tends to be high, and characteristic sequences of ecosystems and cryospheric systems are found along mountain slopes. The boundaries between these systems experience shifts due to environmental change and thus may be used as indicators of such changes. The higher parts of many mountain ranges are not affected by direct human activities. These areas include many national parks and other protected environments. They may serve as locations where the environmental impacts of climate change alone, including changes in atmospheric chemistry, can be studied directly. Mountain regions are distributed all over the globe, from the Equator almost to the poles and from oceanic to highly continental climates. This global distribution allows us to perform comparative regional studies and to analyse the regional differentiation of environmental change processes as characterised above. Therefore, within the IGBP an Initiative for Collaborative Research on Global Change and Mountain Regions was developed, which strives to achieve an integrated approach for observing, modelling and investigating global change phenomena and processes in mountain regions, including their impacts on ecosystems and socio-economic systems.
Global Land Project: Science Plan and ImplementationStrategy
The Global Land Project (GLP) Science Plan and Implementation Strategy represents the joint research agenda of IGBP and IHDP to improve the understanding of land system dynamics in the context of Earth System functioning. This plan is therefore a first critical step in addressing the interaction between people and their environments. It is part of the broader efforts to understand how these interactions have affected, and may yet affect, the sustainability of the terrestrial biosphere, and the two-way interactions and feedbacks between different land systems within the Earth System. GLP will play a clear role in improving the understanding of regional and global-scale land systems, as well as promoting strong scientific synergy across the global change programmes. This Science Plan and Implementation Strategy develops a new integrated paradigm focused on two main conceptual aspects of the coupled system: firstly, it deals with the interface between people, biota, and natural resources of terrestrial systems, and secondly, it combines detailed regional studies with a global, comparative perspective. GLP takes as its points of departure ecosystem services and human decision making for the terrestrial environment. These topics are at the interface of the societal and the environmental domains, and serve as conceptual lenses for the research plan.
Land-Ocean Interactions in the Coastal Zone: Science Plan and Implementation Strategy
Coastal zones play a key role in Earth System functioning, by contributing significantly to the life support systems of most societies. Human activities modifying riverine hydrology and riverine material fluxes to the coastal zone, have increased in both scale and rate of change in the last 200 years. The underlying processes that drive changes to coastal systems occur at a multiplicity of temporal and spatial scales. These changes alter the availability of ecosystem goods and services. However, disciplinary fragmentation impedes our ability to understand the regional and global changes that affect coastal systems, and thus limits our ability to guide management and decision making. Progress has been made in understanding the changes in Earth System processes that affect the coastal zone, and the role of coastal systems in global change. This includes identifying proxies that describe the state of coastal systems under existing conditions and change scenarios. Typologies have been developed to assist in the interpolation of results into areas where primary information is lacking. This has enabled a first-order up-scaling to a global synthesis.
Land-Use and Land-Cover Change (LUCC): Implementation Strategy
The Implementation Strategy of the Land-Use and Land-Cover Change (LUCC) project specifies in greater detail the activities and projects that will fulfil the mandate outlined in the LUCC Science/Research Plan published in 1995. The project, a joint initiative of IGBP and IHDP, is addressing important global change questions on the local, regional and global scale. The planned and ongoing activities involve a wide community of natural and social scientists. The new understanding of land-use and land-cover change dynamics following from the work carried out under the LUCC Implementation Strategy will be of crucial importance to the global environmental change research community as well as to decision-makers at the local, regional and global levels.
Back to Top of Screen