A Hamiltonian-Free Description of Single Particle Dynamics for Hopelessly Complex Periodic Systems

PDF Version Also Available for Download.

Description

We develop a picture of periodic systems which does not rely on the Hamiltonian of the system but on maps between a finite number of time locations. Moser or Deprit-like normalizations are done directly on the maps thereby avoiding the complex time-dependent theory. We redefine linear and nonlinear Floquet variables entirely in terms of maps. This approach relies heavily on the Lie representation of maps introduced by Dragt and Finn. One might say that although we do not use the Hamiltonian in the normalization transformation, we are using Lie operators which are themselves, in some sense, pseudo-Hamiltonians for the maps … continued below

Physical Description

58

Creation Information

Forest, E. January 1, 1990.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 31 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We develop a picture of periodic systems which does not rely on the Hamiltonian of the system but on maps between a finite number of time locations. Moser or Deprit-like normalizations are done directly on the maps thereby avoiding the complex time-dependent theory. We redefine linear and nonlinear Floquet variables entirely in terms of maps. This approach relies heavily on the Lie representation of maps introduced by Dragt and Finn. One might say that although we do not use the Hamiltonian in the normalization transformation, we are using Lie operators which are themselves, in some sense, pseudo-Hamiltonians for the maps they represent. Our techniques find application in accelerator dynamics or in any field where the Hamiltonian is periodic but hopelessly complex, such as magnetic field design in stellarators.

Physical Description

58

Source

  • Journal Name: Journal of mathematical physics; Journal Volume: 31; Journal Issue: 5; Related Information: Journal Publication Date: 1990

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBL-28471
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 1000482
  • Archival Resource Key: ark:/67531/metadc836068

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1990

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • June 16, 2016, 12:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 31

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Forest, E. A Hamiltonian-Free Description of Single Particle Dynamics for Hopelessly Complex Periodic Systems, article, January 1, 1990; Berkeley, California. (https://digital.library.unt.edu/ark:/67531/metadc836068/: accessed April 25, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen