Two-phase flow in regionally saturated fractured rock near excavations

PDF Version Also Available for Download.

Description

Hydrologic characterization for potential nuclear waste repositories relies upon data obtained from testing in excavations. The Simulated Drift Experiment in the Stripa Mine in Sweden, a fractured granitic formation below the water table, investigated excavation effects on hydrologic response. Measured water inflow to the drift at atmospheric pressure was nine times less than the value predicted from the inflow to boreholes with pressure held at 2.7 bars. This flow reduction may be due to dissolved gas that comes out of solution at pressures below 2.7 bars, creating a two-phase regime. To investigate this possibility, theoretical studies of flow through fractures … continued below

Physical Description

7 p.

Creation Information

Geller, J. T.; Doughty, C. & Long, J. C. S. November 1, 1994.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 19 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Hydrologic characterization for potential nuclear waste repositories relies upon data obtained from testing in excavations. The Simulated Drift Experiment in the Stripa Mine in Sweden, a fractured granitic formation below the water table, investigated excavation effects on hydrologic response. Measured water inflow to the drift at atmospheric pressure was nine times less than the value predicted from the inflow to boreholes with pressure held at 2.7 bars. This flow reduction may be due to dissolved gas that comes out of solution at pressures below 2.7 bars, creating a two-phase regime. To investigate this possibility, theoretical studies of flow through fractures when the water is super-saturated with respect to dissolved gas are carried out, using a simple analytical solution followed by a numerical model which relaxes some of the simplifying assumptions. Laboratory experiments that simulate degassing in transparent fracture replicas are conducted to test the assumptions used in the theoretical studies.

Physical Description

7 p.

Notes

INIS; OSTI as DE95012357

Source

  • International high-level radioactive waste management conference: progress toward understanding, Las Vegas, NV (United States), 1-5 May 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95012357
  • Report No.: LBL--36386
  • Report No.: CONF-950570--22
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 72888
  • Archival Resource Key: ark:/67531/metadc706809

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1994

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • June 29, 2020, 9:21 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 19

Interact With This Article

Here are some suggestions for what to do next.

Top Search Results

We found two places within this article that matched your search. View Now

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Geller, J. T.; Doughty, C. & Long, J. C. S. Two-phase flow in regionally saturated fractured rock near excavations, article, November 1, 1994; California. (https://digital.library.unt.edu/ark:/67531/metadc706809/: accessed April 25, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen