General Purpose Computing in Gpu - a Watermarking Case Study

PDF Version Also Available for Download.

Description

The purpose of this project is to explore the GPU for general purpose computing. The GPU is a massively parallel computing device that has a high-throughput, exhibits high arithmetic intensity, has a large market presence, and with the increasing computation power being added to it each year through innovations, the GPU is a perfect candidate to complement the CPU in performing computations. The GPU follows the single instruction multiple data (SIMD) model for applying operations on its data. This model allows the GPU to be very useful for assisting the CPU in performing computations on data that is highly parallel … continued below

Physical Description

ix, 78 pages : illustrations (some color)

Creation Information

Hanson, Anthony August 2014.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 733 times. More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Hanson, Anthony

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

The purpose of this project is to explore the GPU for general purpose computing. The GPU is a massively parallel computing device that has a high-throughput, exhibits high arithmetic intensity, has a large market presence, and with the increasing computation power being added to it each year through innovations, the GPU is a perfect candidate to complement the CPU in performing computations. The GPU follows the single instruction multiple data (SIMD) model for applying operations on its data. This model allows the GPU to be very useful for assisting the CPU in performing computations on data that is highly parallel in nature. The compute unified device architecture (CUDA) is a parallel computing and programming platform for NVIDIA GPUs. The main focus of this project is to show the power, speed, and performance of a CUDA-enabled GPU for digital video watermark insertion in the H.264 video compression domain. Digital video watermarking in general is a highly computationally intensive process that is strongly dependent on the video compression format in place. The H.264/MPEG-4 AVC video compression format has high compression efficiency at the expense of having high computational complexity and leaving little room for an imperceptible watermark to be inserted. Employing a human visual model to limit distortion and degradation of visual quality introduced by the watermark is a good choice for designing a video watermarking algorithm though this does introduce more computational complexity to the algorithm. Research is being conducted into how the CPU-GPU execution of the digital watermark application can boost the speed of the applications several times compared to running the application on a standalone CPU using NVIDIA visual profiler to optimize the application.

Physical Description

ix, 78 pages : illustrations (some color)

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • August 2014

Added to The UNT Digital Library

  • Aug. 21, 2015, 5:42 a.m.

Description Last Updated

  • Nov. 17, 2016, 7:15 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 733

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hanson, Anthony. General Purpose Computing in Gpu - a Watermarking Case Study, thesis, August 2014; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc700078/: accessed April 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen