Glyoxal Oxidation Mechanism: Implications for the Reactions HCO + O2 and OCHCHO + HO2

PDF Version Also Available for Download.

Description

Article on glyoxal oxidation mechanism and implications for the reactions HCO + O2 and OCHCHO + HO2.

Physical Description

11 p.

Creation Information

Faßheber, Nancy; Friedrichs, Gernot; Marshall, Paul & Glarborg, Peter January 22, 2015.

Context

This article is part of the collection entitled: UNT Scholarly Works and was provided by the UNT College of Arts and Sciences to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 361 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT College of Arts and Sciences

The UNT College of Arts and Sciences educates students in traditional liberal arts, performing arts, sciences, professional, and technical academic programs. In addition to its departments, the college includes academic centers, institutes, programs, and offices providing diverse courses of study.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Article on glyoxal oxidation mechanism and implications for the reactions HCO + O2 and OCHCHO + HO2.

Physical Description

11 p.

Notes

Reprinted with permission from the Journal of Physical Chemistry A. Copyright 2015 American Chemical Society.

Abstract: A detailed mechanism for the thermal decomposition and oxidation of the flame intermediate glyoxal (OCHCHO) has been assembled from available theoretical and experimental literature data. The modeling capabilities of this extensive mechanism have been tested by simulating experimental HCO profiles measured at intermediate and high temperatures in previous glyoxal photolysis and pyrolysis studies. Additionally, new experiments on glyoxal pyrolysis and oxidation have been performed with glyoxal and glyoxal/oxygen mixtures in Ar behind shock waves at temperatures of 1285–1760 K at two different total density ranges. HCO concentration–time profiles have been detected by frequency modulation spectroscopy at a wavelength of λ = 614.752 nm. The temperature range of available direct rate constant data of the high-temperature key reaction HCO + O2 → CO + HO2 has been extended up to 1705 K and confirms a temperature dependence consistent with a dominating direct abstraction channel. Taking into account available literature data obtained at lower temperatures, the following rate constant expression is recommended over the temperature range 295 K < T < 1705 K: k1/(cm3 mol–1 s–1) = 6.92 × 106 × T1.90 × exp(+5.73 kJ/mol/RT). At intermediate temperatures, the reaction OCHCHO + HO2 becomes more important. A detailed reanalysis of previous experimental data as well as more recent theoretical predictions favor the formation of a recombination product in contrast to the formerly assumed dominating and fast OH-forming channel. Modeling results of the present study support the formation of HOCH(OO)CHO and provide a 2 orders of magnitude lower rate constant estimate for the OH channel. Hence, low-temperature generation of chain carriers has to be attributed to secondary reactions of HOCH(OO)CHO.

This article is part of the 100 Years of Combustion Kinetics at Argonne. A Festschrift for Lawrence B. Harding, Joe V. Michael, and Albert F. Wagner special issue.

Source

  • Journal of Physical Chemistry A, 119(28), American Chemical Society, January 22, 2015, pp. 1-11

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

Publication Information

  • Publication Title: Journal of Physical Chemistry A
  • Volume: 119
  • Issue: 28
  • Page Start: 7305
  • Page End: 7315
  • Peer Reviewed: Yes

Collections

This article is part of the following collection of related materials.

UNT Scholarly Works

Materials from the UNT community's research, creative, and scholarly activities and UNT's Open Access Repository. Access to some items in this collection may be restricted.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 22, 2015

Added to The UNT Digital Library

  • Aug. 20, 2015, 9:49 p.m.

Description Last Updated

  • Dec. 11, 2023, 11:12 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 361

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Faßheber, Nancy; Friedrichs, Gernot; Marshall, Paul & Glarborg, Peter. Glyoxal Oxidation Mechanism: Implications for the Reactions HCO + O2 and OCHCHO + HO2, article, January 22, 2015; [Washington, D.C.]. (https://digital.library.unt.edu/ark:/67531/metadc699769/: accessed April 24, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT College of Arts and Sciences.

Back to Top of Screen