Piezoresistive Polyvinylidene Fluoride/Carbon Filled Nanocomposites

Description:

This thesis examines the value of using dispersed conductive fillers as a stress/strain sensing material. The effect of the intrinsic conductivity of the filler on the ability to be effective and the influence of filler concentration on the conductivity are also examined. To meet these objectives, nanocomposites of polyvinylidene fluoride (PVDF) with carbon nanofibers (CNFs) and carbon nanotubes (CNTs) were prepared by melt-blending using a twin screw extruder. Since PVDF has a potential to be piezoresistive based on the type of crystalline phase, the effect of CNFs on PVDF crystallinity, crystalline phase, quasi static and dynamic mechanical property was studied concurrently with piezoresponse. Three time dependencies were examined for PVDF/CNTs nanocomposites: quasi-static, transient and cyclic fatigue. The transient response of the strain with time showed viscoelastic behavior and was modeled by the 4-element Burger model. Under quasi-static loading the resistance showed negative pressure coefficient below yield but changed to a positive pressure coefficient after yield. Under cyclic load, the stress-time and resistance-time were synchronous but the resistance peak value decreased with increasing cycles, which was attributed to charge storage in the nanocomposite. The outcomes of this thesis indicate that a new piezoresponsive system based on filled polymers is a viable technology for structural health monitoring.

Creator(s): Vidhate, Shailesh
Creation Date: May 2011
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 692
Past 30 days: 29
Yesterday: 0
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Place of Publication: Denton, Texas
Date(s):
  • Creation: May 2011
Description:

This thesis examines the value of using dispersed conductive fillers as a stress/strain sensing material. The effect of the intrinsic conductivity of the filler on the ability to be effective and the influence of filler concentration on the conductivity are also examined. To meet these objectives, nanocomposites of polyvinylidene fluoride (PVDF) with carbon nanofibers (CNFs) and carbon nanotubes (CNTs) were prepared by melt-blending using a twin screw extruder. Since PVDF has a potential to be piezoresistive based on the type of crystalline phase, the effect of CNFs on PVDF crystallinity, crystalline phase, quasi static and dynamic mechanical property was studied concurrently with piezoresponse. Three time dependencies were examined for PVDF/CNTs nanocomposites: quasi-static, transient and cyclic fatigue. The transient response of the strain with time showed viscoelastic behavior and was modeled by the 4-element Burger model. Under quasi-static loading the resistance showed negative pressure coefficient below yield but changed to a positive pressure coefficient after yield. Under cyclic load, the stress-time and resistance-time were synchronous but the resistance peak value decreased with increasing cycles, which was attributed to charge storage in the nanocomposite. The outcomes of this thesis indicate that a new piezoresponsive system based on filled polymers is a viable technology for structural health monitoring.

Degree:
Level: Master's
Language(s):
Subject(s):
Keyword(s): CNT | structural health monitoring | PVDF | CNF
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • ARK: ark:/67531/metadc68059
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Public
License: Copyright
Holder: Vidhate, Shailesh
Statement: Copyright is held by the author, unless otherwise noted. All rights reserved.