Mechanisms of Ordered Gamma Prime Precipitation in Nickel Base Superalloys

Description:

Commercial superalloys like Rene88DT are used in high temperature applications like turbine disk in aircraft jet engines due to their excellent high temperature properties, including strength, ductility, improved fracture toughness, fatigue resistance, enhanced creep and oxidation resistance. Typically this alloy's microstructure has L12-ordered precipitates dispersed in disordered face-centered cubic γ matrix. A typical industrially relevant heat-treatment often leads to the formation of multiple size ranges of γ¢ precipitates presumably arising from multiple nucleation bursts during the continuous cooling process. The morphology and distribution of these γ′ precipitates inside γ matrix influences the mechanical properties of these materials. Therefore, the study of thermodynamic and kinetic factors influencing the evolution of these precipitates and subsequent effects is both relevant for commercial applications as well as for a fundamental understanding of the underlying phase transformations. The present research is primarily focused on understanding the mechanism of formation of different generations of γ′ precipitates during continuous cooling by coupling scanning electron microscopy (SEM), energy filtered TEM and atom probe tomography (APT). In addition, the phase transformations leading to nucleation of γ′ phase has been a topic of controversy for decades. The present work, for the first time, gives a novel insight into the mechanism of order-disorder transformations and associated phase separation processes at atomistic length scales, by coupling high angle annular dark field (HAADF) - STEM imaging and APT. The results indicate that multiple competing mechanisms can operate during a single continuous cooling process leading to different generations of γ′ including a non-classical mechanism, operative at large undercoolings.

Creator(s): Singh, Antariksh Rao Pratap
Creation Date: May 2011
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 2,937
Past 30 days: 113
Yesterday: 1
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Place of Publication: Denton, Texas
Date(s):
  • Creation: May 2011
Description:

Commercial superalloys like Rene88DT are used in high temperature applications like turbine disk in aircraft jet engines due to their excellent high temperature properties, including strength, ductility, improved fracture toughness, fatigue resistance, enhanced creep and oxidation resistance. Typically this alloy's microstructure has L12-ordered precipitates dispersed in disordered face-centered cubic γ matrix. A typical industrially relevant heat-treatment often leads to the formation of multiple size ranges of γ¢ precipitates presumably arising from multiple nucleation bursts during the continuous cooling process. The morphology and distribution of these γ′ precipitates inside γ matrix influences the mechanical properties of these materials. Therefore, the study of thermodynamic and kinetic factors influencing the evolution of these precipitates and subsequent effects is both relevant for commercial applications as well as for a fundamental understanding of the underlying phase transformations. The present research is primarily focused on understanding the mechanism of formation of different generations of γ′ precipitates during continuous cooling by coupling scanning electron microscopy (SEM), energy filtered TEM and atom probe tomography (APT). In addition, the phase transformations leading to nucleation of γ′ phase has been a topic of controversy for decades. The present work, for the first time, gives a novel insight into the mechanism of order-disorder transformations and associated phase separation processes at atomistic length scales, by coupling high angle annular dark field (HAADF) - STEM imaging and APT. The results indicate that multiple competing mechanisms can operate during a single continuous cooling process leading to different generations of γ′ including a non-classical mechanism, operative at large undercoolings.

Degree:
Level: Doctoral
Language(s):
Subject(s):
Keyword(s): Superalloy | gamma prime | mechanism
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • ARK: ark:/67531/metadc67949
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Public
License: Copyright
Holder: Singh, Antariksh Rao Pratap
Statement: Copyright is held by the author, unless otherwise noted. All rights reserved.