General Theory of Aerodynamic Instability and the Mechanism of Flutter

Description:

The aerodynamic forces on an oscillating airfoil or airfoil-aileron combination of three independent degrees of freedom have been determined. The problem resolves itself into the solution of certain definite integrals, which have been identified as Bessel functions of the first and second kind and of zero and first order. The theory, being based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing-section theory relating to the steady case. The air forces being known, the mechanism of aerodynamic instability has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been arrived at. The solution is of a simple form and is expressed by means of an auxiliary parameter K.

Creator(s): Theodorsen, Theodore
Creation Date: January 1, 1949
Partner(s):
UNT Libraries Government Documents Department
Collection(s):
National Advisory Committee for Aeronautics Collection
Technical Report Archive and Image Library
Usage:
Total Uses: 108
Past 30 days: 10
Yesterday: 0
Creator (Author):
Date(s):
  • Creation: January 1, 1949
Description:

The aerodynamic forces on an oscillating airfoil or airfoil-aileron combination of three independent degrees of freedom have been determined. The problem resolves itself into the solution of certain definite integrals, which have been identified as Bessel functions of the first and second kind and of zero and first order. The theory, being based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing-section theory relating to the steady case. The air forces being known, the mechanism of aerodynamic instability has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been arrived at. The solution is of a simple form and is expressed by means of an auxiliary parameter K.

Language(s):
Subject(s):
Keyword(s): aerodynamics
Contributor(s):
Serial Title: NACA Technical Reports
Partner:
UNT Libraries Government Documents Department
Collection:
National Advisory Committee for Aeronautics Collection
Collection:
Technical Report Archive and Image Library
Identifier:
Resource Type: Report
Format: Text
Rights:
Access: Public
Statement: No Copyright, Unclassified, Unlimited, Publicly available