Correction of Profile-Drag Results from Variable-Density Tunnel and the Effect on the Choice of Wing-Section Thickness

Description:

Profile-drag coefficients published from tests in the N.A.C.A. variable-density tunnel (Technical Reports Nos. 460, 537, 586, and 610, references 1 to 4) have tended to appear high as compared with results from the N.A.C.A. full-scale tunnel (Technical Report No. 530, reference 5) and from foreign sources (references 6 to 8). Such discrepancies were considered in Technical Report No. 586, and corrections for turbulence and tip effects were derived that tended to reduce the profile-drag coefficients, particularly for the thicker airfoils. The corrected profile-drag coefficients, designated by the lower-case symbol cdo as contrasted with the older CDO, have been employed in the airfoil reports published since Technical Report No. 460, but even these corrected results continued to appear high, particularly for the thicker sections. The important practical result is that a smaller increase of drag with airfoil thickness is indicated, which may be of primary importance to the airplane designer in choosing the optimum airfoil sections for actual wings. Further investigations of this subject were, of course, undertaken, one of the most important being an investigation of three symmetrical sections N.A.C A. 0009, 0012, and 0018 under conditions of low turbulence in the full-scale tunnel. Preliminary results from this investigation also indicate a smaller increase in drag with airfoil thickness than the results from the variable-density tunnel. Furthermore, comparative tests made in the two tunnels by applying strings to the surface of the N.A.C.A. 0012 airfoil to move the transition point to a predetermined position indicated that the effective reynolds Number concept would account approximately for the drag as affected by the position of transition from laminar to turbulent flow in the boundary layer.

Creator(s): Jacobs, Eastman N.
Creation Date: March 1, 1938
Partner(s):
UNT Libraries Government Documents Department
Collection(s):
National Advisory Committee for Aeronautics Collection
Technical Report Archive and Image Library
Usage:
Total Uses: 45
Past 30 days: 7
Yesterday: 1
Creator (Author):
Date(s):
  • Creation: March 1, 1938
Description:

Profile-drag coefficients published from tests in the N.A.C.A. variable-density tunnel (Technical Reports Nos. 460, 537, 586, and 610, references 1 to 4) have tended to appear high as compared with results from the N.A.C.A. full-scale tunnel (Technical Report No. 530, reference 5) and from foreign sources (references 6 to 8). Such discrepancies were considered in Technical Report No. 586, and corrections for turbulence and tip effects were derived that tended to reduce the profile-drag coefficients, particularly for the thicker airfoils. The corrected profile-drag coefficients, designated by the lower-case symbol cdo as contrasted with the older CDO, have been employed in the airfoil reports published since Technical Report No. 460, but even these corrected results continued to appear high, particularly for the thicker sections. The important practical result is that a smaller increase of drag with airfoil thickness is indicated, which may be of primary importance to the airplane designer in choosing the optimum airfoil sections for actual wings. Further investigations of this subject were, of course, undertaken, one of the most important being an investigation of three symmetrical sections N.A.C A. 0009, 0012, and 0018 under conditions of low turbulence in the full-scale tunnel. Preliminary results from this investigation also indicate a smaller increase in drag with airfoil thickness than the results from the variable-density tunnel. Furthermore, comparative tests made in the two tunnels by applying strings to the surface of the N.A.C.A. 0012 airfoil to move the transition point to a predetermined position indicated that the effective reynolds Number concept would account approximately for the drag as affected by the position of transition from laminar to turbulent flow in the boundary layer.

Language(s):
Subject(s):
Keyword(s): fluid mechanics and thermodynamics
Contributor(s):
Serial Title: NACA Special Report
Partner:
UNT Libraries Government Documents Department
Collection:
National Advisory Committee for Aeronautics Collection
Collection:
Technical Report Archive and Image Library
Identifier:
Resource Type: Report
Format: Text
Rights:
Access: Public
Statement: No Copyright, Unclassified, Unlimited, Publicly available