Exploring Trusted Platform Module Capabilities: A Theoretical and Experimental Study

Description:

Trusted platform modules (TPMs) are hardware modules that are bound to a computer's motherboard, that are being included in many desktops and laptops. Augmenting computers with these hardware modules adds powerful functionality in distributed settings, allowing us to reason about the security of these systems in new ways. In this dissertation, I study the functionality of TPMs from a theoretical as well as an experimental perspective. On the theoretical front, I leverage various features of TPMs to construct applications like random oracles that are impossible to implement in a standard model of computation. Apart from random oracles, I construct a new cryptographic primitive which is basically a non-interactive form of the standard cryptographic primitive of oblivious transfer. I apply this new primitive to secure mobile agent computations, where interaction between various entities is typically required to ensure security. I prove these constructions are secure using standard cryptographic techniques and assumptions. To test the practicability of these constructions and their applications, I performed an experimental study, both on an actual TPM and a software TPM simulator which has been enhanced to make it reflect timings from a real TPM. This allowed me to benchmark the performance of the applications and test the feasibility of the proposed extensions to standard TPMs. My tests also show that these constructions are practical.

Creator(s): Gunupudi, Vandana
Creation Date: May 2008
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 137
Past 30 days: 5
Yesterday: 0
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Place of Publication: Denton, Texas
Date(s):
  • Creation: May 2008
  • Digitized: July 17, 2008
Description:

Trusted platform modules (TPMs) are hardware modules that are bound to a computer's motherboard, that are being included in many desktops and laptops. Augmenting computers with these hardware modules adds powerful functionality in distributed settings, allowing us to reason about the security of these systems in new ways. In this dissertation, I study the functionality of TPMs from a theoretical as well as an experimental perspective. On the theoretical front, I leverage various features of TPMs to construct applications like random oracles that are impossible to implement in a standard model of computation. Apart from random oracles, I construct a new cryptographic primitive which is basically a non-interactive form of the standard cryptographic primitive of oblivious transfer. I apply this new primitive to secure mobile agent computations, where interaction between various entities is typically required to ensure security. I prove these constructions are secure using standard cryptographic techniques and assumptions. To test the practicability of these constructions and their applications, I performed an experimental study, both on an actual TPM and a software TPM simulator which has been enhanced to make it reflect timings from a real TPM. This allowed me to benchmark the performance of the applications and test the feasibility of the proposed extensions to standard TPMs. My tests also show that these constructions are practical.

Degree:
Level: Doctoral
Discipline: Computer Science
Language(s):
Subject(s):
Keyword(s): random oracles | Trusted computing | oblivious transfer
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • OCLC: 263882030 |
  • ARK: ark:/67531/metadc6101
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Public
License: Copyright
Holder: Gunupudi, Vandana
Statement: Copyright is held by the author, unless otherwise noted. All rights reserved.