Functionalization and characterization of porous low-κ dielectrics.

Access: Use of this item is restricted to the UNT Community
Description:

The incorporation of fluorine into SiO2 has been shown to reduce the dielectric constant of the existing materials by reducing the electrical polarizability. However, the incorporation of fluorine has also been shown to decrease film stability. Therefore, new efforts have been made to find different ways to further decrease the relative dielectric constant value of the existing low-k materials. One way to reduce the dielectric constant is by decreasing its density. This reduces the amount of polarizable materials. A good approach is increasing porosity of the film. Recently, fluorinated silica xerogel films have been identified as potential candidates for applications such as interlayer dielectric materials in CMOS technology. In addition to their low dielectric constants, these films present properties such as low refractive indices, low thermal conductivities, and high surface areas. Another approach to lower k is incorporating lighter atoms such as hydrogen or carbon. Silsesquioxane based materials are among them. However, additional integration issues such as damage to these materials caused by plasma etch, plasma ash, and wet etch processes are yet to be overcome. This dissertation reports the effects of triethoxyfluorosilane-based (TEFS) xerogel films when reacted with silylation agents. TEFS films were employed because they form robust silica networks and exhibit low dielectric constants. However, these films readily absorb moisture. Employing silylation reactions enhances film hydrophobicity and permits possible introduction of this film as an interlayer dielectric material. Also, this work describes the effects of SC-CO2 in combination with silylating agents used to functionalize the damaged surface of the ash-damaged MSQ films. Ashed MSQ films exhibit increased water adsorption and dielectric constants due to the carbon depletion and modification of the properties of the low-k material caused by interaction with plasma species. CO2 is widely used as a supercritical solvent, because of its easily accessible critical point, low cost, and non-hazardous nature. Its unique diffusion and surface tension properties make SC-CO2 a good candidate for treatment of porous ultra low-k materials.

Creator(s): Orozco-Teran, Rosa Amelia
Creation Date: May 2005
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 65
Past 30 days: 1
Yesterday: 0
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Place of Publication: Denton, Texas
Date(s):
  • Creation: May 2005
  • Digitized: February 12, 2008
Description:

The incorporation of fluorine into SiO2 has been shown to reduce the dielectric constant of the existing materials by reducing the electrical polarizability. However, the incorporation of fluorine has also been shown to decrease film stability. Therefore, new efforts have been made to find different ways to further decrease the relative dielectric constant value of the existing low-k materials. One way to reduce the dielectric constant is by decreasing its density. This reduces the amount of polarizable materials. A good approach is increasing porosity of the film. Recently, fluorinated silica xerogel films have been identified as potential candidates for applications such as interlayer dielectric materials in CMOS technology. In addition to their low dielectric constants, these films present properties such as low refractive indices, low thermal conductivities, and high surface areas. Another approach to lower k is incorporating lighter atoms such as hydrogen or carbon. Silsesquioxane based materials are among them. However, additional integration issues such as damage to these materials caused by plasma etch, plasma ash, and wet etch processes are yet to be overcome. This dissertation reports the effects of triethoxyfluorosilane-based (TEFS) xerogel films when reacted with silylation agents. TEFS films were employed because they form robust silica networks and exhibit low dielectric constants. However, these films readily absorb moisture. Employing silylation reactions enhances film hydrophobicity and permits possible introduction of this film as an interlayer dielectric material. Also, this work describes the effects of SC-CO2 in combination with silylating agents used to functionalize the damaged surface of the ash-damaged MSQ films. Ashed MSQ films exhibit increased water adsorption and dielectric constants due to the carbon depletion and modification of the properties of the low-k material caused by interaction with plasma species. CO2 is widely used as a supercritical solvent, because of its easily accessible critical point, low cost, and non-hazardous nature. Its unique diffusion and surface tension properties make SC-CO2 a good candidate for treatment of porous ultra low-k materials.

Degree:
Level: Doctoral
Language(s):
Subject(s):
Keyword(s): supercritical | low-κ | silylation | MSQ
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • OCLC: 62093596 |
  • ARK: ark:/67531/metadc5570
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Use restricted to UNT Community (strictly enforced)
License: Copyright
Holder: Orozco-Teran, Rosa Amelia
Statement: Copyright is held by the author, unless otherwise noted. All rights reserved.