Application of cultured neuronal networks for use as biological sensors in water toxicology and lipid signaling.

Access: Use of this item is restricted to the UNT Community
Description:

This dissertation research explored the capabilities of neuronal networks grown on substrate integrated microelectrode arrays in vitro to be applied to toxicological research and lipid signaling. Chapter 1 details the effects of chlorine on neuronal network spontaneous electrical activity and pharmacological sensitivity. This study demonstrates that neuronal networks can maintain baseline spontaneous activity, and respond normally to pharmacological manipulations in the present of three times the chlorine present in drinking water. The findings suggest that neuronal networks may be used as biological sensors to monitor the quality of water and the presence of novel toxicants that cannot be detected by conventional sensors. Chapter 2 details the neuromodulatory effects of N-acylethanolamides (NAEs) on the spontaneous electrical activity of neuronal networks. NAEs are a group of lipids that can mimic the effects of marijuana and can be derived from a variety of plant sources including soy lecithin. The most prominent NAEs in soy lecithin, palmitoylethanolamide (PEA) and linoleoylethanolamide (LEA), were tested individually and were found to significantly inhibit neuronal spiking and bursting activity. These effects were potentiated by a mixture of NAEs as found in a HPLC enriched fraction from soy lecithin. Cannabinoid receptor-1 (CB1-R) antagonists and other cannabinoid pathway modulators indicated that the CB1-R was not directly involved in the effects of NAEs, but that enzymatic degradation and cellular uptake were more likely targets. The results demonstrate that neuronal networks may also be a viable platform for the elucidation of biochemical pathways and drug mechanisms of action.

Creator(s): Dian, Emese Emöke
Creation Date: August 2004
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 71
Past 30 days: 1
Yesterday: 0
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Place of Publication: Denton, Texas
Date(s):
  • Creation: August 2004
  • Digitized: November 26, 2007
Description:

This dissertation research explored the capabilities of neuronal networks grown on substrate integrated microelectrode arrays in vitro to be applied to toxicological research and lipid signaling. Chapter 1 details the effects of chlorine on neuronal network spontaneous electrical activity and pharmacological sensitivity. This study demonstrates that neuronal networks can maintain baseline spontaneous activity, and respond normally to pharmacological manipulations in the present of three times the chlorine present in drinking water. The findings suggest that neuronal networks may be used as biological sensors to monitor the quality of water and the presence of novel toxicants that cannot be detected by conventional sensors. Chapter 2 details the neuromodulatory effects of N-acylethanolamides (NAEs) on the spontaneous electrical activity of neuronal networks. NAEs are a group of lipids that can mimic the effects of marijuana and can be derived from a variety of plant sources including soy lecithin. The most prominent NAEs in soy lecithin, palmitoylethanolamide (PEA) and linoleoylethanolamide (LEA), were tested individually and were found to significantly inhibit neuronal spiking and bursting activity. These effects were potentiated by a mixture of NAEs as found in a HPLC enriched fraction from soy lecithin. Cannabinoid receptor-1 (CB1-R) antagonists and other cannabinoid pathway modulators indicated that the CB1-R was not directly involved in the effects of NAEs, but that enzymatic degradation and cellular uptake were more likely targets. The results demonstrate that neuronal networks may also be a viable platform for the elucidation of biochemical pathways and drug mechanisms of action.

Degree:
Level: Doctoral
Discipline: Biology
Language(s):
Subject(s):
Keyword(s): neuronal networks | microelectrode array | pharmacology
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • OCLC: 56760917 |
  • ARK: ark:/67531/metadc5557
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Use restricted to UNT Community (strictly enforced)
License: Copyright
Holder: Dian, Emese Emöke
Statement: Copyright is held by the author, unless otherwise noted. All rights reserved.