The aerodynamic characteristics of airfoils at negative angles of attack

Description:

A number of airfoils, including 14 commonly used airfoils and 10 NACA airfoils, were tested through the negative angle-of-attack range in the NACA variable-density wind tunnel at a Reynolds Number of approximately 3,000,000. The tests were made to supply data to serve as a basis for the structural design of airplanes in the inverted flight condition. In order to make the results immediately available for this purpose they are presented herein in preliminary form, together with results of previous tests of the airfoils at positive angles of attack. An analysis of the results made to find the variation of the ratio of the maximum negative lift coefficient to the maximum positive lift coefficient led to the following conclusions: 1) For airfoils of a given thickness, the ratio -C(sub L max) / +C(sub L max) tends to decrease as the mean camber is increased. 2) For airfoils of a given mean camber, the ratio -C(sub L max) / +C(sub L max) tends to increase as the thickness increases.

Creator(s): Anderson, Raymond F
Creation Date: March 1, 1932
Partner(s):
UNT Libraries Government Documents Department
Collection(s):
National Advisory Committee for Aeronautics Collection
Technical Report Archive and Image Library
Usage:
Total Uses: 244
Past 30 days: 10
Yesterday: 0
Creator (Author):
Date(s):
  • Creation: March 1, 1932
Description:

A number of airfoils, including 14 commonly used airfoils and 10 NACA airfoils, were tested through the negative angle-of-attack range in the NACA variable-density wind tunnel at a Reynolds Number of approximately 3,000,000. The tests were made to supply data to serve as a basis for the structural design of airplanes in the inverted flight condition. In order to make the results immediately available for this purpose they are presented herein in preliminary form, together with results of previous tests of the airfoils at positive angles of attack. An analysis of the results made to find the variation of the ratio of the maximum negative lift coefficient to the maximum positive lift coefficient led to the following conclusions: 1) For airfoils of a given thickness, the ratio -C(sub L max) / +C(sub L max) tends to decrease as the mean camber is increased. 2) For airfoils of a given mean camber, the ratio -C(sub L max) / +C(sub L max) tends to increase as the thickness increases.

Language(s):
Subject(s):
Contributor(s):
Serial Title: NACA Technical Notes
Partner:
UNT Libraries Government Documents Department
Collection:
National Advisory Committee for Aeronautics Collection
Collection:
Technical Report Archive and Image Library
Identifier:
Resource Type: Report
Format: Text
Rights:
Access: Public
Statement: No Copyright, Unclassified, Unlimited, Publicly available