General Potential Theory of Arbitrary Wing Sections

Description:

The problem of determining the two dimensional potential flow around wing sections of any shape is examined. The problem is condensed into the compact form of an integral equation capable of yielding numerical solutions by a direct process. An attempt is made to analyze and coordinate the results of earlier studies relating to properties of wing sections. The existing approximate theory of thin wing sections and the Joukowski theory with its numerous generalizations are reduced to special cases of the general theory of arbitrary sections, permitting a clearer perspective of the entire field. The method which permits the determination of the velocity at any point of an arbitrary section and the associated lift and moments is described. The method is also discussed in terms for developing new shapes of preassigned aerodynamical properties.

Creator(s):
Creation Date: December 1, 1979
Partner(s):
UNT Libraries Government Documents Department
Collection(s):
National Advisory Committee for Aeronautics Collection
Technical Report Archive and Image Library
Usage:
Total Uses: 347
Past 30 days: 12
Yesterday: 0
Creator (Author):
Creator (Author):
Date(s):
  • Creation: December 1, 1979
Description:

The problem of determining the two dimensional potential flow around wing sections of any shape is examined. The problem is condensed into the compact form of an integral equation capable of yielding numerical solutions by a direct process. An attempt is made to analyze and coordinate the results of earlier studies relating to properties of wing sections. The existing approximate theory of thin wing sections and the Joukowski theory with its numerous generalizations are reduced to special cases of the general theory of arbitrary sections, permitting a clearer perspective of the entire field. The method which permits the determination of the velocity at any point of an arbitrary section and the associated lift and moments is described. The method is also discussed in terms for developing new shapes of preassigned aerodynamical properties.

Language(s):
Subject(s):
Keyword(s): aerodynamics
Source: NASA. Ames Res. Center Classical Aerodyn. Theory; p 257-289
Contributor(s):
Serial Title: NACA Technical Reports
Partner:
UNT Libraries Government Documents Department
Collection:
National Advisory Committee for Aeronautics Collection
Collection:
Technical Report Archive and Image Library
Identifier:
Resource Type: Report
Format: Text
Rights:
Access: Public
Statement: No Copyright, Unclassified, Unlimited, Publicly available