An Integrated Architecture for Ad Hoc Grids

Description:

Extensive research has been conducted by the grid community to enable large-scale collaborations in pre-configured environments. grid collaborations can vary in scale and motivation resulting in a coarse classification of grids: national grid, project grid, enterprise grid, and volunteer grid. Despite the differences in scope and scale, all the traditional grids in practice share some common assumptions. They support mutually collaborative communities, adopt a centralized control for membership, and assume a well-defined non-changing collaboration. To support grid applications that do not confirm to these assumptions, we propose the concept of ad hoc grids. In the context of this research, we propose a novel architecture for ad hoc grids that integrates a suite of component frameworks. Specifically, our architecture combines the community management framework, security framework, abstraction framework, quality of service framework, and reputation framework. The overarching objective of our integrated architecture is to support a variety of grid applications in a self-controlled fashion with the help of a self-organizing ad hoc community. We introduce mechanisms in our architecture that successfully isolates malicious elements from the community, inherently improving the quality of grid services and extracting deterministic quality assurances from the underlying infrastructure. We also emphasize on the technology-independence of our architecture, thereby offering the requisite platform for technology interoperability. The feasibility of the proposed architecture is verified with a high-quality ad hoc grid implementation. Additionally, we have analyzed the performance and behavior of ad hoc grids with respect to several control parameters.

Creator(s): Amin, Kaizar Abdul Husain
Creation Date: May 2006
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 233
Past 30 days: 60
Yesterday: 4
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Place of Publication: Denton, Texas
Date(s):
  • Creation: May 2006
  • Digitized: April 11, 2008
Description:

Extensive research has been conducted by the grid community to enable large-scale collaborations in pre-configured environments. grid collaborations can vary in scale and motivation resulting in a coarse classification of grids: national grid, project grid, enterprise grid, and volunteer grid. Despite the differences in scope and scale, all the traditional grids in practice share some common assumptions. They support mutually collaborative communities, adopt a centralized control for membership, and assume a well-defined non-changing collaboration. To support grid applications that do not confirm to these assumptions, we propose the concept of ad hoc grids. In the context of this research, we propose a novel architecture for ad hoc grids that integrates a suite of component frameworks. Specifically, our architecture combines the community management framework, security framework, abstraction framework, quality of service framework, and reputation framework. The overarching objective of our integrated architecture is to support a variety of grid applications in a self-controlled fashion with the help of a self-organizing ad hoc community. We introduce mechanisms in our architecture that successfully isolates malicious elements from the community, inherently improving the quality of grid services and extracting deterministic quality assurances from the underlying infrastructure. We also emphasize on the technology-independence of our architecture, thereby offering the requisite platform for technology interoperability. The feasibility of the proposed architecture is verified with a high-quality ad hoc grid implementation. Additionally, we have analyzed the performance and behavior of ad hoc grids with respect to several control parameters.

Degree:
Level: Doctoral
Discipline: Computer Science
Language(s):
Subject(s):
Keyword(s): grid | ad hoc | QoS
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • OCLC: 70279582 |
  • ARK: ark:/67531/metadc5300
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Public
License: Copyright
Holder: Amin, Kaizar Abdul Husain
Statement: Copyright is held by the author, unless otherwise noted. All rights reserved.