Evaluation of Adsorption and Microcoulometric Methods for Determination of Halogenated Organic Compounds in Water

PDF Version Also Available for Download.

Description

Two adsorption/microcoulometric methods have been investigated for total organic halogen (TOX) in water. TOX, a proposed water-quality parameter, is a rapid, surrogate method to detect halides microcoulometrically and does not require compound identification before water quality can be judged. An XAD resin is used to concentrate organic halides that are eluted by a two-step, two-solvent procedure, followed by analysis using :chromatography or pyrolysis to convert organic halides to halide. In the granular activated carbon (GAC) method, the entire GAC-organic halide sample is pyrolyzed. TOX measurements of model compounds are comparable by both methods, but GAC was found to be superior … continued below

Physical Description

vi, 83 leaves: ill.

Creation Information

Kinstley, Warren O. (Warren Owen) May 1980.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 131 times. More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Kinstley, Warren O. (Warren Owen)

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Two adsorption/microcoulometric methods have been investigated for total organic halogen (TOX) in water. TOX, a proposed water-quality parameter, is a rapid, surrogate method to detect halides microcoulometrically and does not require compound identification before water quality can be judged. An XAD resin is used to concentrate organic halides that are eluted by a two-step, two-solvent procedure, followed by analysis using :chromatography or pyrolysis to convert organic halides to halide. In the granular activated carbon (GAC) method, the entire GAC-organic halide sample is pyrolyzed. TOX measurements of model compounds are comparable by both methods, but GAC was found to be superior to XAD for adsorption of chlorinated humics in drinking water and chlorinated lake water.

Physical Description

vi, 83 leaves: ill.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 1980

Added to The UNT Digital Library

  • May 10, 2015, 6:16 a.m.

Description Last Updated

  • Aug. 4, 2023, 3:49 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 131

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kinstley, Warren O. (Warren Owen). Evaluation of Adsorption and Microcoulometric Methods for Determination of Halogenated Organic Compounds in Water, thesis, May 1980; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc504016/: accessed April 25, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen