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I. INTRODUCTION

Number theorists have investigated the distribution of prime numbers
for centuries. Historically, π(x) was defined to count the number of primes
less than or equal to x. In 1793, Gauss conjectured that π(x) ∼ x

log(x)
as

x → ∞, which is the Prime Number Theorem, but this was not proved
until 1896 by J. Hadamard [5] and de la Vallée Poussin [9] independently of
each other. It was not until 1949 that Atle Selberg [7] and Paul Erdös [4],
also independently of each other, discovered an elementary proof of the Prime
Number Theorem. In 1837, Dirichlet [2] proved that for two positive integers,
k and l, with no common prime factors, the sequence {kn + l}∞n=0 contains
infinitely many primes. Our goal is to find a way to count the number of
primes in this sequence. To do this, we define the function πk,l(x) to count
the number of primes less than or equal to x in the sequence. In 1896, de
la Vallée Poussin [9] proved that for the sequence {kn + l}∞n=0, πk,l(x) ∼

1
Φ(k)

x
log(x)

as x → ∞,(where Φ is the Euler phi-function), which is the Prime
Number Theorem for arithmetic progressions. In particular, de la Vallée
Poussin’s result implies the Prime Number Theorem since π1,1(x) = π(x) and
Φ(1) = 1. Moreover, it implies that sequence {kn + l}∞n=0 contains infinitely
many primes. In 1980, D. Newman [6] gave a clever proof of the Prime
Number Theorem. His proof requires complex analysis, properties of the
Riemann ζ-function and a weaker version of the Wiener-Ikehara Tauberian
Theorem. In 1998, J. Elstrodt followed Newman’s approach to prove the
Prime Number Theorem for arithmetic progressions. This thesis is devoted
to giving the details of Elstrodt’s proof.

The first section gives a brief review of Dirichlet characters.

The second section focuses on L-functions and their properties. The
Riemann ζ-function is the easiest example of an L-function. L-functions play
a significant role in analytic number theory, hence we will direct much of our
attention to this section.

Section three is the basis for the proof of the Prime Number Theorem
for arithmetic progressions. We will concentrate on Newman’s proof of the
Tauberian Theorem. The Tauberian Theorem will be an essential tool in the
proof of the Prime Number Theorem for arithmetic progressions.

In the fourth section we will prove the Prime Number Theorem for
arithmetic progressions. The proof requires the combined results of sections
1, 2, and 3.
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1. CHARACTERS

The purpose of this section is to introduce Dirichlet characters. In particular,
we need the following definitions in order to define L-functions in the next
section.

Definition 1. A character on a finite group G is a homomorphism, χ : G →
C∗, from G to the multipicative group C∗

Definition 2. Let χ and χ′ be characters on G. Then χχ′(g) := χ(g)χ′(g)
and χ−1(g) := (χ(g))−1.

Definition 3. A Dirichlet character mod N is a character on the group
(Z�NZ)∗ = {n (mod N) | (n, N) = 1}. Also, if χ is a Dirichlet character
then we extend χ : Z → C by

χ(n) =

{

χ(n (mod N)) if (n, N) = 1
0 if (n, N) > 1 .

The principal character χ0(mod N) is given by

χ0(n) =

{

1 if (n, N) = 1
0 if (n, N) > 1 .

Note that χ2 = χ0 if and only if χ is a real character, i.e., χ is real valued.

The following theorem is needed to prove the next two theorems.

Theorem 1. There are Φ(N) distinct Dirichlet characters mod N.

Proof. Recall from group theory that for every finite abelian group G, G ∼=
Z�d1Z×Z�d2Z×· · ·×Z�djZ, where |G| = d1d2 · · ·dj. Hence, the number
of distinct homomorphisms from G → C∗ is |G|. Therefore, there are Φ(N)
distinct Dirichlet characters.

The two following orthogonality relations are important in the study of char-
acters. The second orthogonality relation will be used in section four.
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Theorem 2 (1st Orthogonality Relation). Let χ1 and χ2 be Dirichlet
characters mod N. Then

1

Φ(N)

∑

n (mod N)

χ1(n)χ2(n) =

{

1 if χ1 = χ2

0 if χ1 6= χ2 .

Proof. Note that if χ1 = χ2 then χ1(n)χ2(n) = 1 for every n mod N . Thus

by the previous theorem we have that
1

Φ(N)

∑

n (mod N)

χ1(n)χ2(n) = 1. Now

assume that χ1 6= χ2. Let m ∈ N such that (m, N) = 1 and χ1(m)χ2(m) 6= 1.
Hence

(1 − χ1(m)χ2(m))
∑

n (mod N)

χ1(n)χ2(n)

=
∑

n (mod N)

χ1(n)χ2(n) −
∑

n (mod N)

χ1(m)χ2(m)χ1(n)χ2(n)

=
∑

n (mod N)

χ1(n)χ2(n) −
∑

n (mod N)

χ1(mn)χ2(mn)

=
∑

n (mod N)

χ1(n)χ2(n) −
∑

n (mod N)

χ1(n)χ2(n) = 0,

where the second to last equality follows from the fact that since we have
that n runs through a complete system of residues of (Z�NZ)∗ then so does
mn. Therefore, since

1 − χ1(m)χ2(m) 6= 0,
∑

n (mod N)

χ1(n)χ2(n) = 0.

Theorem 3 (2nd Orthogonality Relation). Let N ∈ N. Then

1

Φ(N)

∑

χ

χ(n) =

{

1 if n ≡ 1 (mod N)
0 otherwise,

where the sum is over all Dirichlet characters mod N.
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Proof. Let n ∈ N such that n ≡ 1(mod N). Thus by Theorem 1,

1

Φ(N)

∑

χ

χ(n) = 1.

Now let n ∈ N such that (n, N) > 1. Then χ(n) = 0 for every χ and hence

1

Φ(N)

∑

χ

χ(n) = 0.

Finally, suppose that N, n ∈ N such that N > 2, (n, N) = 1 and n ≡
a(mod N) for some a 6= 1. Let χ1 be a Dirichlet character mod N where
χ1(n) 6= 1. Hence

(1 − χ1(n))
∑

χ

χ(n)

=
∑

χ

χ(n) −
∑

χ

χ1(n)χ(n)

=
∑

χ

χ(n) −
∑

χ

χ(n) = 0,

where the second to last equality follows from the fact that since χ runs
through all characters of (Z�NZ)∗ then so does χ1χ. Therefore, since

1 − χ1(n) 6= 0,
∑

χ

χ(n) = 0.
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2. L-FUNCTIONS

In this section we discuss L-functions, which are generalizations of the Rie-
mann ζ-function. From this point on we will write a typical complex variable
as s = σ + it for σ, t ∈ R.

Definition 4. Let s ∈ C such that σ > 1. If χ is a Dirichlet character mod
N, then

L(s, χ) =

∞
∑

n=1

χ(n)

ns

is an L-function or a Dirichlet L-series. In particular, if N = 1, then

L(s, χ0) =

∞
∑

n=1

χ0(n)

ns
=

∞
∑

n=1

1

ns
= ζ(s).

The next theorem characterizes the meromorphic continuation of L-function’s
to the complex plane. In particular, all we need is that L(s, χ) is meromorphic
when σ > 0.

Theorem 4. a) For the principal character χ0 (mod N), L(s, χ0) has a mero-
morphic continuation to the complex plane, which is holomorphic everywhere
except for a pole at s=1 with Res(L; 1) = Φ(N)

N
.

b) For χ 6= χ0 and N > 1, L(s, χ) has a holomorphic continuation to the
complex plane.

A proof of this theorem is given on pages 255-256 of Apostol [1].

Theorem 4.a implies the following corollary which is an interesting fact about
the Riemann ζ-function.

Corollary 1. The Riemann zeta function, ζ(s), has a meromorphic contin-
uation to the complex plane, which is holomorphic everywhere except for a
simple pole at s=1 with Res(ζ; 1) = 1.

Euler products play an important role in analytic number theory.

Theorem 5 (Euler Products). Let f(n) be a multiplicative function, i.e.,

f(ab)=f(a)f(b) for a, b ∈ N such that (a,b)=1, and suppose that F =
∞

∑

n=1

f(n)
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converges absolutely. Then F =
∏

p prime

∞
∑

k=0

f(pk) is the Euler product for

F. Moreover, if f(n) is completely multiplicative, i.e., f(ab)=f(a)f(b) for all

a, b ∈ N, then F =
∏

p prime

1

1 − f(p)
.

Proof. Define P (x) =
∏

p prime
p≤x

∞
∑

k=0

f(pk). Thus

P (x) =
∏

p prime
p≤x

∞
∑

k=0

f(pk) =
∏

p prime
p≤x

(1 + f(p) + f(p2) + ...) =
∑

n∈A

f(n),

where A = {n ∈ N | if p is a prime factor of n then p ≤ x}. Since

∞
∑

k=0

f(pk)

converges absolutely, we may arrange the terms in any way. Hence F−P (x) =
∑

n∈B

f(n) where B = {n ∈ N | there exists a prime factor of n, p, such that p >

x}. Thus
∣

∣

∣

∣

∣

∞
∑

n=1

f(n) − P (x)

∣

∣

∣

∣

∣

≤
∑

n∈B

|f(n)| ≤
∑

n>x

|f(n)| −→
x→∞

0,

since
∞

∑

n=1

|f(n)| < ∞. Therefore P (x) −→
x→∞

F .

If f(n) is completely multiplicative then f(pk) = f(p)k for every k. Thus

F =
∏

p prime

∞
∑

k=0

f(pk) =
∏

p prime

∞
∑

k=0

f(p)k =
∏

p prime

1

1 − f(p)
.

Note that if χ is a homomorphism, then f(n) = χ(n)
ns is completely multi-

plicative. Hence we find that

L(s, χ) =
∏

p prime

1

1 − χ(p)p−s
.
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The following definitions are useful in the study of L-functions. We will point
out their importance shortly.

Definition 5. Let n ∈ N. Then the Mangoldt function Λ(n) is defined by

Λ(n) :=

{

log(p) if n = pk where p is prime and k ∈ N

0 otherwise.

Definition 6. Let x > 0. Then the Chebyshev Ψ -function is defined by

Ψ(x) =
∑

n≤x

Λ(n).

In combination with Newman’s Tauberian Theorem, (to which the following
section is devoted), the next theorem plays a key role in section four.

Theorem 6. For x0 > 1, there exists an M ∈ R+ such that |Ψ(x)| ≤ Mx

for every x > x0, i.e.,

Ψ(x) = O(x) as x → ∞.

Proof. Let ϑ(x) :=
∑

p prime
p≤x

log(p). Note that if p is a prime such that n ≤ p ≤

2n, then p

∣

∣

∣

∣

(

2n
n

)

. Hence

∏

p prime
n≤p≤2n

p ≤

(

2n
n

)

≤

2n
∑

l=1

(

2n
l

)

= (1 + 1)2n = 22n.

Taking logarithms on both sides and setting n = 2l−1 yields

∑

p prime

2l−1≤p≤2l

log(p) ≤ 2l log(2).

Thus

∑

p prime

p≤2l

log(p) ≤ (2l + 2l−1 + ... + 2 + 1) log(2) ≤ 2l+1 log(2).
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Let x > 1 and choose l such that 2l−1 < x ≤ 2l. Hence

ϑ(x) =
∑

p prime
p≤x

log(p) ≤
∑

p prime

p≤2l

log(p) ≤ 2l+1 log(2)

= 4(2l−1) log(2) ≤ 4 log(2)x = O(x).

Thus we have that

Ψ(x) =
∑

n≤x

Λ(n) =

∞
∑

k=1

∑

p prime

pk≤x

Λ(pk)

=

∞
∑

k=1

∑

p prime

p≤x
1
k

log(p) =
∑

k≤log2(x)

∑

p prime

p≤x
1
k

log(p)

=
∑

k≤log2(x)

ϑ(x
1
k ) ≤ ϑ(x) + log2(x)ϑ(x

1
2 )

= O(x).

The following two theorems provide conditions for convergence and informa-
tion as to when series are holomorphic.

Theorem 7. If the series
∞

∑

n=1

ann−s does not converge everywhere and does

not diverge everywhere, then there exists σ0 ∈ R, called the abscissa of con-
vergence, such that the series converges for all s with σ > σ0 and diverges
for all s with σ < σ0.

The proof of this theorem is given on pages 233 of Apostol [1].

Theorem 8. Suppose that F (s) =

∞
∑

n=1

ann−s converges for s = s0 = σ0 + it0.

Then F (s) converges uniformly on every compact subset of D = {s ∈ C|σ >

σ0}. Moreover, F (s) is holomorphic for σ > σ0 and

F (k)(s) = (−1)k

∞
∑

n=1

(log(n))kann−s

for every k ∈ N.
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The proof of this theorem is given on pages 235-236 of Apostol [1].

The following theorem is an important fact about Dirichlet series.

Theorem 9 (Landau’s Theorem). Let F (s) =
∞

∑

n=1

ann−s where an ∈ R,

an ≥ 0, and let σ0 be the abscissa of convergence of F (s). Then F (s) has a
singularity at s = σ0.

Proof. Without loss of generality let σ0 = 0. By contradiction, suppose that
F (s) is holomorphic at s = 0. Then F (s) is holomorphic for |s| < ε for
some ε > 0 and for σ > 0. Thus F (s) has a Taylor series around s = 1

with a radius of convergence R > 1. Hence F (s) =
∞

∑

k=0

F (k)(1)

k!
(s − 1)k for

|s − 1| < R. Thus there exists δ > 0 such that

F (−δ) =

∞
∑

k=0

(−δ − 1)k

k!
F (k)(1)

=
Theorem 8

∞
∑

k=0

(−δ − 1)k

k!
(−1)k

∞
∑

n=1

(log(n))k

n
an

=
∞

∑

n=1

an

n

∞
∑

k=0

(1 + δ)k

k!
(log(n))k

=
∞

∑

n=1

an

n
e(1+δ) log(n)

=

∞
∑

n=1

annδ < ∞,

which contradicts σ0 = 0.

The following theorem is an essential tool for the proof of the Prime Num-
ber Theorem for arithmetic progressions, providing a crucial property of L-
functions when σ = 1.

Theorem 10. If t ∈ R and χ 6= χ0, then L(1 + it, χ) 6= 0. Also, if t ∈ R

such that t 6= 0 then L(1 + it, χ0) 6= 0. In particular, ζ(1 + it) 6= 0 when
t 6= 0.
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Proof. By Theorem 5 and Theorem 8 we have that

−
L

′

L
(s, χ) =

∑

p prime

log(p) χ(p) p−s

1 − χ(p) p−s

=
∑

p prime

log(p) χ(p) p−s(1 + χ(p) p−s + χ(p2) p−2s + ...)

=
∑

p prime

log(p) (χ(p) p−s + χ(p2) p−2s + · · · )

=

∞
∑

n=1

Λ(n)χ(n)n−s.

For σ > 1,

Re

[

3
L

′

L
(σ, χ0) + 4

L
′

L
(σ + it, χ) +

L
′

L
(σ + 2it, χ2)

]

= −
∞

∑

n=1

Λ(n)

nσ
Re

[

3χ0(n) + 4χ(n)n−it + χ2(n)n−2it)
]

.

But since 3+4cos(φ)+cos(2φ) = 2(1+cos(φ))2 ≥ 0, where φ = arg(χ(n)n−it),
we find that

Re

[

3
L

′

L
(σ, χ0) + 4

L
′

L
(σ + it, χ) +

L
′

L
(σ + 2it, χ2)

]

≤ 0.

Assume that χ2 6= χ0. By contradiction, suppose that L has a zero of order
m at s = 1+it, where m ≥ 1. Recall that if f is holomorphic in G ⊆ C and f

has a zero of order n at s0, then f(s) = (s− s0)
ng(s) where g is holomorphic

in G and g(s0) 6= 0. By Theorem 4.b we have that L(s, χ) is holomorphic for
s = 1 + it. Thus L(s, χ) = (s − (1 + it))mg(s) where g(1 + it) 6= 0. Hence

L
′

L
(σ + it, χ) =

m

σ − 1
+ O(1) as σ → 1+. (1)

Again by Theorem 4.b we have that L(s, χ2) = (s− (1+2it))a h(s) for a ≥ 0
and h(1 + 2it) 6= 0. Thus

L
′

L
(σ + 2it, χ2) =

a

σ − 1
+ O(1) as σ → 1+. (2)
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Hence

Re

[

3
L

′

L
(σ, χ0) + 4

L
′

L
(σ + it, χ) +

L
′

L
(σ + 2it, χ2)

]

=
1

σ − 1
(−3 + 4m + a) + O(1) as σ → 1+.

But since m ≥ 1 we have that

Re

[

3
L

′

L
(σ, χ0) + 4

L
′

L
(σ + it, χ) +

L
′

L
(σ + 2it, χ2)

]

≥ 0,

which is a contradiction.

Now assume that χ2 = χ0. Recall that χ is a real character. Thus for
t 6= 0, by Theorem 4, L(s, χ) and L(s, χ2) are holomorphic and the previous
proof by contradiction holds. Hence we are done for χ = χ0. It remains to
consider L(1 + it, χ) when χ 6= χ0 and t = 0.

By contradiction, suppose that L(1, χ) = 0. Thus f(s) = ζ(s)L(s, χ) is

holomorphic at s = 1. For s ∈ C where σ > 1 we have that f(s) =
∞

∑

n=1

ann−s,

and by Theorem 5 we have that f(s) =
∏

p prime

1

1 − p−s

∏

p prime

1

1 − χ(p)p−s
.

Note that if:

i) χ(p) = 1, then

∏

p prime
χ(p)=1

(

1

1 − p−s

)

∏

p prime
χ(p)=1

(

1

1 − p−s

)

=
∏

p prime
χ(p)=1

(1 +
2

ps
+

3

p2s
+ · · · )

ii) χ(p) = −1, then

∏

p prime

χ(p)=−1

(

1

1 − p−s

)

∏

p prime

χ(p)=−1

(

1

1 + p−s

)

=
∏

p prime

χ(p)=−1

(1 + p−2s + p−4s + · · · )

iii) χ(p) = 0, then

∏

p prime
χ(p)=0

(

1

1 − p−s

)

∏

p prime
χ(p)=0

(

1

1 + (0)p−s

)

=
∏

p prime
χ(p)=0

(1 + p−s + p−2s + · · · ).
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Therefore, since

∏

p prime

χ(p)=1

(

1 +
2

ps
+ · · ·

)

∏

p prime

χ(p)=−1

(

1 + p−2s + · · ·

)

∏

p prime

χ(p)=0

(

1 + p−s + · · ·

)

=
∞

∑

n=1

ann−s,

it follows that an ∈ R, an ≥ 0 and an2 ≥ 1. Note that

f

(

1

2

)

=
∞

∑

n=1

ann− 1
2 ≥

∞
∑

n=1

an2n−1 ≥
∞

∑

n=1

n−1 = ∞.

Let σ0 be the abscissa of convergence for f(s). Since f has a singularity
at s = 1

2
, we have that σ0 ≥ 1

2
. Also, since L(1, χ) = 0, f does not have

a singularity at s = 1. Consequently, by Landau’s Theorem we have that
1
2
≤ σ0 < 1. Recall from Landau’s Theorem that f has a singularity at

s = σ0, but by Theorem 4 we have that ζ(s) and L(s, χ) are holomorphic for
1
2
≤ σ < 1, which is a contradiction.
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3. TAUBERIAN THEOREM

This section deals with the fundamental ingredient in the proof of the Prime
Number Theorem for arithmetic progressions, Newman’s Tauberian Theo-
rem. The first theorem provides the necessary means to prove it.

Theorem 11. Let F : (0,∞) −→ C be a bounded and locally integrable

function. For s ∈ C, set g(s) =

∫ ∞

0

F (x)e−sxdx. Then g is holomorphic for

σ > 0. Moreover, suppose that g extends holomorphically to σ ≥ 0. Then
∫ ∞

0

F (x)dx exists and is equal to g(0).

Proof. We will proceed as in Newman [6]. Let λ > 0 and define gλ(s) =
∫ λ

0

F (x)e−sxdx. Thus gλ(s) is an entire function. We want to show that

gλ(0) → g(0) as λ → ∞. Let γ be the boundary of D = {s ∈ C : |s| ≤
R, σ ≥ −δ} where δ > 0 and, depending on R, δ is small enough such that

g(s) is holomorphic on D and on γ.

Define γ = γ+ ⊥ γ− where γ+ = γ|0≤σ≤R and γ− = γ|−δ≤σ<0.

Newman’s Trick: By the Cauchy integral formula, we have that

(g(0) − gλ(0))eλ0 =
1

2πi

∫

γ

(g(s) − gλ(s))e
λs

(

1

s
+

s

R2

)

ds.

First consider γ+. We have
∣

∣

∣

∣

(g(s) − gλ(s))e
λs

(

1

s
+

s

R2

)
∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

λ

F (x)e−sxdx[eλs]

(

1

s
+

s

R2

)
∣

∣

∣

∣

.
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By assumption there exists B ∈ R+ such that |F (s)| ≤ B. Thus

∣

∣

∣

∣

∫ ∞

λ

F (x)e−sxdx[eλs]

(

1

s
+

s

R2

)
∣

∣

∣

∣

≤

∫ ∞

λ

Be−σxdx eλσ

∣

∣

∣

∣

1

s
+

s

R2

∣

∣

∣

∣

=
B

σ

∣

∣

∣

∣

1

s
+

s

R2

∣

∣

∣

∣

=
R=|s|

B

σ

∣

∣

∣

∣

s + s

R2

∣

∣

∣

∣

=
2B

R2
.

Hence
∣

∣

∣

∣

1

2πi

∫

γ+

(g(s) − gλ(s))e
λs

(

1

s
+

s

R2

)

ds

∣

∣

∣

∣

≤
1

2π

∫

γ+

2B

R2
|ds| =

B

R
. (3)

Now consider γ−. Note that

|gλ(s)| =

∣

∣

∣

∣

∫ λ

0

F (x)e−sxdx

∣

∣

∣

∣

≤ B

∫ λ

0

e−σtdt <
B

|σ|
e−λσ.

Set γ∗(φ) = Reiφ for π
2
≤ φ ≤ 3π

2
. Since gλ(s) is entire,

∣

∣

∣

∣

1

2πi

∫

γ−

gλ(s)e
λs

(

1

s
+

s

R2

)

ds

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2πi

∫

γ∗

gλ(s)e
λs

(

1

s
+

s

R2

)

ds

∣

∣

∣

∣

≤
1

2π

∫

γ∗

|gλ(s)|(e
λσ)

∣

∣

∣

∣

1

s
+

s

R2

∣

∣

∣

∣

|ds| ≤
1

2π

∫

γ∗

B

|σ|
eλσe−λσ 2|σ|

R2
|ds| =

B

R
.

(4)

14



Finally we will estimate

∫

γ−

g(s)eλs

(

1

s
+

s

R2

)

ds. Let ε > 0, set R = B
ε

and choose δ > 0 small enough such that g(s) is holomorphic on D and γ.

Also define C = max
s∈[γ−]

∣

∣

∣

∣

g(s)

(

1

s
+

s

R2

)
∣

∣

∣

∣

. Now pick µ > 0 such that

∣

∣

∣

∣

∣

1

2πi

∫

γ−

−µ≤σ<0

g(s)eλs

(

1

s
+

s

R2

)

ds

∣

∣

∣

∣

∣

≤
C

2π

∫

γ−

−µ≤σ<0

|ds| < ε. (5)

Furthermore, for σ ≤ −µ, we have that

∣

∣

∣

∣

∣

1

2πi

∫

γ−

σ≤−µ

g(s)eλs

(

1

s
+

s

R2

)

ds

∣

∣

∣

∣

∣

≤
C

2π
e−λµ

∫

γ−

σ≤−µ

|ds| ≤
C

2
Re−λµ.

Since for ε > 0 , C and R are very large and µ is very small, we may vary λ.
Thus for every ε > 0 there exists λ0 > 0 such that for σ ≤ −µ,

∣

∣

∣

∣

∣

1

2πi

∫

γ−

σ≤−µ

g(s)eλs

(

1

s
+

s

R2

)

ds

∣

∣

∣

∣

∣

< ε (6)

for all λ ≥ λ0. Thus by equations (3), (4), (5) and (6) we get that
|g(0) − gλ(0)| < 4ε. Therefore gλ(0) −→ g(0).

The next theorem is the last (and most important) before the proof of the
Prime Number Theorem for arithmetic progressions.

Theorem 12 (Newman’s Tauberian Theorem). Let f : [1,∞) → [0,∞)
be a nonnegative, nondecreasing function and f(x) = O(x) as x → ∞, so

that it’s Mellin Transform, g(s) = s

∫ ∞

1

f(x)x−s−1dx, is a well-defined and

holomorphic for σ > 1. Suppose further that for some constant c > 0, the
function g(s) − c

s−1
can be continued holomorphically to a neighborhood of

the line σ = 1. Then

f(x) ∼ cx as x → ∞, i.e., lim
x→∞

f(x)

x
= c.

15



Proof. Define F (x) = e−xf(ex) − c. Hence F (x) is bounded and on (0,∞).
Note that for

G(s) : =

∫ ∞

0

F (x)e−sxdx

=

∫ ∞

0

(e−xf(ex) − c)e−sxdx

=
y=ex

∫ ∞

1

f(y)y−s−2dy −
c

s

=
1

s + 1
g(s + 1) −

c

s
.

By assumption, G(s) can be continued holomorphically to a neighborhood
of σ ≥ 0. Thus by Theorem 11 we have that

∫ ∞

0

(e−xf(ex) − c)dx =

∫ ∞

1

f(y) − cy

y2
dy

exists.

Suppose that there is some a > 1 such that for an arbitrarily large x0 we
have f(x) ≥ acx for x ≥ x0 This would imply that

∫ ax

x

f(y) − cy

y2
dy ≥

∫ ax

x

f(x) − cy

y2
dy

≥

∫ ax

x

acx − cy

y2
dy =

∫ a

1

acx − c(ux)

(ux)2
xdu

= c

∫ a

1

a − u

u2
du > 0,

which is a contradiction by the Cauchy criterion.

Now suppose that there is some 0 < a < 1 such that for an arbitrarily
large x0 we have f(x) ≤ acx for x ≥ x0. This would imply that

∫ x

ax

f(y) − cy

y2
dy ≤

∫ x

ax

f(x) − cy

y2
dy

≤

∫ x

ax

acx − cy

y2
dy = c

∫ 1

a

a − u

u2
du < 0,

again a contradiction. Therefore

f(x) ∼ cx as x → ∞.
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4. PROOF OF THE PRIME NUMBER THEOREM FOR ARITHMETIC
PROGRESSONS

The following theorem is the main result of the thesis and the proof is due
to Elstrodt [3].

Theorem 13. Let k, l ∈ N such that (k, l) = 1 and define πk,l(x) to count
the number of prime numbers in the sequence {kn + l}∞n=0 that are less than
or equal to x. Then πk,l(x) ∼ 1

Φ(k)
x

log(x)
as x → ∞.

Proof. Let χ be a Dirichlet Character (mod k), and s ∈ C such that σ > 1.
By Theorem 3 and the proof of Theorem 10 we have that

−
1

Φ(k)

∑

χ

χ(l)
L

′
(s, χ)

L(s, χ)
=

∞
∑

ν=1

∑

p prime
pν≡l(modk)

log(p)p−νs =
∞

∑

n=1

Λk,l(n)n−s

where

Λk,l(n) :=

{

log(p) if n = pν and n ≡ l(mod k)
0 otherwise.

The definition of Λk,l(n) allows us to define the Chebyshev function,

Ψk,l(x) =
∑

n≤x

Λk,l(n) =
∑

pν≤x

pν≡l(modk)

log(p).

Note that Ψk,l(x) ≤ Ψ(x) =
Theorem 6

O(x), i.e., Ψk,l(x) = O(x) as x → ∞.

Thus

−
1

Φ(k)

∑

χ

χ(l)
L

′
(s, χ)

L(s, χ)
=

∞
∑

n=1

Λk,l(n)n−s

=
∞

∑

n=1

[Ψk,l(n) − Ψk,l(n − 1)]n−s = lim
α→∞

α
∑

n=1

[Ψk,l(n) − Ψk,l(n − 1)]n−s

= lim
α→∞

{[Ψk,l(1) − Ψk,l(0)](1−s) + · · ·+ [Ψk,l(α) − Ψk,l(α − 1)](α−s)}

= lim
α→∞

α−1
∑

n=1

Ψk,l(n)[n−s − (n + 1)−s] + lim
α→∞

Ψk,l(α)(α)−s

=
Ψk,l(x)=O(x)

σ>1

∞
∑

n=1

Ψk,l(n)[n−s − (n + 1)−s] =
∞

∑

n=1

Ψk,l(n)s

∫ n+1

n

x−s−1dx

= s

∫ ∞

1

Ψk,l(x)x−s−1dx.
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Since Ψk,l(x) = O(x) as x → ∞, Ψk,l : [1,∞) → [0,∞), and Ψk,l is a
nondecreasing function, we may apply Theorem 12 to Ψk,l(x). We need that
the function

q(s) := −
1

Φ(k)

∑

χ

χ(l)
L

′
(s, χ)

L(s, χ)
= s

∫ ∞

1

Ψk,l(x)x−s−1dx

satisfies the hypothesis of g(s) in Theorem 12.

It is sufficient to show that L
′
(s,χ)

L(s,χ)
is holomorphic in a neighborhood of

σ = 1. Recall from Theorem 10 that for χ 6= χ0, L(1 + it, χ) 6= 0 for every

t ∈ R. Thus for χ (mod k), L
′
(s,χ)

L(s,χ)
is holomorphic in a neighborhood of σ = 1.

Hence we must consider χ0 (mod k), since L(1 + it, χ0) 6= 0 for t 6= 0. Note
that

L(s, χ0) =
∏

p prime
(p,k)=1

1

1 − p−s

=
∏

p prime
p|k

(1 − p−s)
∏

p prime

1

1 − p−s

=
∏

p prime

p|k

(1 − p−s)ζ(s).

Thus
L

′

(s, χ0) =
∏

p prime
p|k

(1 − p−s)ζ
′

(s) + ζ(s)
∑

p prime
p|k

log(p)p−s.

Hence

−
L

′
(s, χ0)

L(s, χ0)
= −

ζ
′
(s)

ζ(s)
−

∑

p prime

p|k

log(p)

ps − 1
=

1

s − 1
+ h(s)

where h(s) is holomorphic in a neighborhood of σ = 1 by Corollary 1 of
Theorem 4. Thus q(s)− 1

Φ(k)
1

s−1
is holomorphic in a neighborhood of σ = 1.

Therefore by Theorem 12 we have that

Ψk,l(x) ∼
1

Φ(k)
x as x → ∞.
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Note that

Ψk,l(x) =
∑

pν≤x
pν≡l(modk)

log(p)

=
∑

p≤x
p≡l(modk)

log(p) +
∑

p2≤x

p2≡l(modk)

log(p) +
∑

p3≤x

p3≡l(modk)

log(p) + · · ·

=
∑

p≤x

p≡l(modk)

log(p) +
∑

p≤x
1
2

p2≡l(modk)

log(p) +
∑

p≤x
1
3

p3≡l(modk)

log(p) + · · ·

≤
∑

p≤x
p≡l(modk)

log(p) +
∑

p≤x
1
2

log(p) +
∑

p≤x
1
3

log(p) + · · ·

≤
∑

p≤x
p≡l(modk)

log(p) + Ψ(x
1
2 ) + Ψ(x

1
3 ) + · · · .

Since Ψ(x
1
2 ) = O(x

1
2 ), Ψ(x

1
2 ) ≥ Ψ(x

1
n ) for n ≥ 2, and there are at most

O(log(x)) terms, we have that Ψ(x
1
2 ) + Ψ(x

1
3 ) + · · · ≤ O((x

1
2 ) log(x)). Also

since log(x) ≥ log(p) for every p ≤ x, p prime, and
∑

p≤x

p≡l(modk)

log(p) ≤ log(x)
∑

p≤x

p≡l(modk)

1 = log(x)πk,l(x),

we have that
Ψk,l(x) ≤ log(x)πk,l(x) + O((x

1
2 ) log(x)).

Thus

lim inf
x→∞

πk,l(x)
log(x)

x
≥

1

Φ(k)
, (7)

since Ψk,l(x) ∼ 1
Φ(k)

x as x → ∞.

Now let 0 < y < x. Hence

πk,l(x) = πk,l(y) +
∑

y<p≤x

p≡l(modk)

1

≤ πk,l(y) +
∑

y<p≤x
p≡l(modk)

log(p)

log(y)

≤ y +
1

log(y)
Ψk,l(x).
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Letting y = x

log2(x)
gives us that

πk,l(x)
log(x)

x
≤

1

log(x)
+

Ψk,l(x)

x

log(x)

log(x) − 2 log log(x)
.

Thus

lim sup
x→∞

πk,l(x)
log(x)

x
≤

1

Φ(k)
. (8)

Equations (7) and (8) yield

πk,l(x) ∼
1

Φ(k)

x

log(x)
.
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