Effects of Thickness and Indenter Tip Geometry in Nanoindentation of Nickel Films

Access: Use of this item is restricted to the UNT Community
Description:

Nanoindentation has become a widely used technique to measure the mechanical properties of materials. Due to its capability to deform materials in micro- and nano-scale, nanoindentation has found more applications in characterizing the deformation behavior and determining the mechanical properties of thin films and coatings. This research deals with the characterization of samples received from Center for Advanced Microstructures and Devices (CAMD) and Integran Technologies Inc., Toronto, Canada and the objective of this investigation was to utilize the experimental data obtained from nanoindentation to determine the deformation behavior, mechanical properties of thin films on substrates and bulk materials, and the effect of geometrically different indenters (Berkovich, cubecorner, and conical). X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) analysis were performed on these materials to determine the crystal orientation, grain size of the material, and also to measure any substrate effects like pile-up or sin-in respectively. The results indicate that indentation size effect (ISE) strongly depends on shape of the indenter and less sensitive to penetration depth where as the hardness measurements depends on shape of indenter and depth of penetration. There is a negligible strain rate dependency of hardness at deeper depths and a significant increase in the hardness due to the decrease in grain size and results also indicate that there is no significant substrate effect on thin films for 10% and 20% of film thicknesses. Nanocrystalline material could not validate a dislocation based mechanisms deformation for indentation made by cubecorner and conical indenters in depths less than 1mm.

Creator(s): Parakala, Padma
Creation Date: May 2004
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 245
Past 30 days: 25
Yesterday: 1
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Place of Publication: Denton, Texas
Date(s):
  • Creation: May 2004
  • Digitized: November 15, 2007
Description:

Nanoindentation has become a widely used technique to measure the mechanical properties of materials. Due to its capability to deform materials in micro- and nano-scale, nanoindentation has found more applications in characterizing the deformation behavior and determining the mechanical properties of thin films and coatings. This research deals with the characterization of samples received from Center for Advanced Microstructures and Devices (CAMD) and Integran Technologies Inc., Toronto, Canada and the objective of this investigation was to utilize the experimental data obtained from nanoindentation to determine the deformation behavior, mechanical properties of thin films on substrates and bulk materials, and the effect of geometrically different indenters (Berkovich, cubecorner, and conical). X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) analysis were performed on these materials to determine the crystal orientation, grain size of the material, and also to measure any substrate effects like pile-up or sin-in respectively. The results indicate that indentation size effect (ISE) strongly depends on shape of the indenter and less sensitive to penetration depth where as the hardness measurements depends on shape of indenter and depth of penetration. There is a negligible strain rate dependency of hardness at deeper depths and a significant increase in the hardness due to the decrease in grain size and results also indicate that there is no significant substrate effect on thin films for 10% and 20% of film thicknesses. Nanocrystalline material could not validate a dislocation based mechanisms deformation for indentation made by cubecorner and conical indenters in depths less than 1mm.

Degree:
Level: Master's
Language(s):
Subject(s):
Keyword(s): Berkovich tip | conical tip | cubecorner tip | indentation size effect | substrate effects
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • OCLC: 55686147 |
  • ARK: ark:/67531/metadc4452
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Use restricted to UNT Community
License: Copyright
Holder: Parakala, Padma
Statement: Copyright is held by the author, unless otherwise noted. All rights reserved.