Critical success factors in data mining projects.

Description:

The increasing awareness of data mining technology, along with the attendant increase in the capturing, warehousing, and utilization of historical data to support evidence-based decision making, is leading many organizations to recognize that the effective use of data is the key element in the next generation of client-server enterprise information technology. The concept of data mining is gaining acceptance in business as a means of seeking higher profits and lower costs. To deploy data mining projects successfully, organizations need to know the key factors for successful data mining. Implementing emerging information systems (IS) can be risky if the critical success factors (CSFs) have been researched insufficiently or documented inadequately. While numerous studies have listed the advantages and described the data mining process, there is little research on the success factors of data mining. This dissertation identifies CSFs in data mining projects. Chapter 1 introduces the history of the data mining process and states the problems, purposes, and significances of this dissertation. Chapter 2 reviews the literature, discusses general concepts of data mining and data mining project contexts, and reviews general concepts of CSF methodologies. It also describes the identification process for the various CSFs used to develop the research framework. Chapter 3 describes the research framework and methodology, detailing how the CSFs were identified and validated from more than 1,300 articles published on data mining and related topics. The validated CSFs, organized into a research framework using 7 factors, generate the research questions and hypotheses. Chapter 4 presents analysis and results, along with the chain of evidence for each research question, the quantitative instrument and survey results. In addition, it discusses how the data were collected and analyzed to answer the research questions. Chapter 5 concludes with a summary of the findings, describing assumptions and limitations and suggesting future research.

Creator(s): Sim, Jaesung
Creation Date: August 2003
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 3,231
Past 30 days: 95
Yesterday: 2
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Place of Publication: Denton, Texas
Date(s):
  • Creation: August 2003
  • Digitized: September 3, 2003
Description:

The increasing awareness of data mining technology, along with the attendant increase in the capturing, warehousing, and utilization of historical data to support evidence-based decision making, is leading many organizations to recognize that the effective use of data is the key element in the next generation of client-server enterprise information technology. The concept of data mining is gaining acceptance in business as a means of seeking higher profits and lower costs. To deploy data mining projects successfully, organizations need to know the key factors for successful data mining. Implementing emerging information systems (IS) can be risky if the critical success factors (CSFs) have been researched insufficiently or documented inadequately. While numerous studies have listed the advantages and described the data mining process, there is little research on the success factors of data mining. This dissertation identifies CSFs in data mining projects. Chapter 1 introduces the history of the data mining process and states the problems, purposes, and significances of this dissertation. Chapter 2 reviews the literature, discusses general concepts of data mining and data mining project contexts, and reviews general concepts of CSF methodologies. It also describes the identification process for the various CSFs used to develop the research framework. Chapter 3 describes the research framework and methodology, detailing how the CSFs were identified and validated from more than 1,300 articles published on data mining and related topics. The validated CSFs, organized into a research framework using 7 factors, generate the research questions and hypotheses. Chapter 4 presents analysis and results, along with the chain of evidence for each research question, the quantitative instrument and survey results. In addition, it discusses how the data were collected and analyzed to answer the research questions. Chapter 5 concludes with a summary of the findings, describing assumptions and limitations and suggesting future research.

Degree:
Level: Doctoral
Language(s):
Subject(s):
Keyword(s): Critical success factors | data mining | CSF
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • OCLC: 53808498 |
  • ARK: ark:/67531/metadc4293
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Public
License: Copyright
Holder: Sim, Jaesung
Statement: Copyright is held by the author, unless otherwise noted. All rights reserved.