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Triclosan (TCS) and triclocarban (TCC), widely used antimicrobial agents found in 

numerous consumer products, are incompletely removed by wastewater treatment plant (WWTP) 

processing.  Methyl-triclosan (M-TCS) is a more lipophilic metabolite of its parent compound, 

TCS.  The focus of this study was to quantify bioaccumulation factors (BAFs) for TCS, M-TCS, 

and TCC in Pecan creek, the receiving stream for the City of Denton, Texas WWTP by using 

field samples mostly composed of the alga Cladophora sp. and the caged snail Helisoma 

trivolvis as test species. 

 Additionally, TCS effects on E. coli and Arabidopsis have been shown to reduce fatty 

acid biosynthesis and total lipid content by inhibiting the trans-2 enoyl- ACP reductase.  The 

lipid synthesis pathway effects of TCS on field samples of Cladophora spp. were also 

investigated in this study by using [2-14C]acetate radiolabeling procedures.  Preliminary results 

indicate high TCS concentrations are toxic to lipid biosynthesis and reduce [2-14C]acetate 

incorporation into total lipids.  These results have led to the concern that chronic exposure of 

algae in receiving streams to environmentally relevant TCS concentrations might affect their 

nutrient value.  If consumer growth is limited, trophic cascade strength may be affected and 

serve to limit population growth and reproduction of herbivores in these riparian systems.  
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CHAPTER 1 

INTRODUCTION* 

Population growth and the accompanying landscape changes within urban areas of the 

United States, and globally, present ongoing challenges for those interested in the ecological 

dynamics of receiving waters.  Anthropogenic changes by the year 2015 as a result of urban land 

use are inevitable as predicted growth of metropolitan areas with populations greater than one 

million increase from 118 to 272 while cities greater than ten million are predicted to increase 

from 14 to 27 (Shah, 1996).  In order to adequately monitor the effects of urban land use on 

global water systems, limnologists and aquatic ecologists will need to work closely with urban 

water managers (Walsh, 2000). 

 Lotic water systems have traditionally been sites of urban center development due to 

ease of transport and availability of food source.  Growing populations eventually required the 

use of urban water systems as sewers and industrial dump sites, which lead to the development 

of sewage treatment facilities (Chadwick, 1842).  The resultant effects of sewage treatment on 

the ecology of receiving waters continue to be challenges as effluent composition reflects 

watershed usage and urbanization.  Pharmaceuticals and personal care products (PPCPs) are 

released as down the drain chemicals inadequately removed by wastewater treatment plant 

(WWTP) processes (Waltman et al., 2006).  Trophic structures within the riparian zones of 

WWTP receiving streams will require better levels of understanding as increasing levels of 

urbanization place greater demands on receiving stream systems that are constantly being 

subjected to anthropogenic influences.  Small urban receiving streams, such as Pecan Creek, 

                                                 
*   Portions of this chapter [identified with an asterisk (*)] were previously published in Chemosphere 67, 1911-
1918, and have been reproduced with permission from Elsevier. 
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Denton, TX, become important as responsive systems for evaluating urbanization effects on 

natural habitats.   

Traditionally, biotic communities within aquatic systems have been known to express 

higher levels of degradation with increasing levels of urbanization due to pollution delivery to 

receiving streams (Walsh, 2000).  In order to limit the impacts of urbanization on riparian zones, 

measures leading to their protection and restoration are required, along with associated riparian 

forests and wetlands (May et al., 1997). 

*Municipal wastewater treatment plants (WWTPs) are a major source of anthropogenic 

chemical release to the environment.  Contaminants of concern, (PPCPs), are not completely 

removed during wastewater processing and are released to the environment in the form of 

WWTP residual solids and effluent (Waltman et al., 2006).  Enriched concentrations of 

contaminants in WWTP effluents in the southwestern United States are of special concern 

because effluent often dominates receiving stream flow, especially during dry low-flow 

conditions (Bradley et al., 1995; Reilly et al., 2000).  An incomplete understanding of the fate of 

contaminants hampers evaluation of potential ecological and human health risks associated with 

effluent discharges after their release to receiving streams. 

*The antimicrobials triclosan (5-chloro-2-[2,4-dichloro-phenoxy]-phenol]; TCS) and 

triclocarban (3,4,4’-trichlorocarbanilide; TCC), are released to the environment by WWTP 

processing at sub-ppb effluent concentrations (Singer et al., 2002; Halden and Paull, 2005; 

Waltman et al., 2006).  Methyl triclosan (M-TCS) is a metabolite of TCS more lipophilic and 

environmentally persistent than the parent compound.  Concentrations of M-TCS are generally 

higher in WWTP effluent  than influent, indicating formation of this transformation product in 

the treatment process (Bester, 2003; Balmer et al., 2004).  TCS has been used for more than 
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thirty-five years as a disinfectant in items such as textiles, plastics, soaps, dermatological creams, 

and dental hygiene products (Singer et al., 2002).  The U.S. Geological Survey (USGS), during a 

1999 and 2000 organic wastewater contaminant (OWC) concentration study among 139 streams 

within 30 states, discovered OWCs in 80% of the sample sites, TCS being one of the most 

frequently detected compounds (Kolpin et al., 2002).   

*TCC has been included in personal care products and detergents since 1957 and has an 

environmental occurrence rate similar to TCS.  Halden and Paull (2005) measured 

concentrations of up to 6750 ng l-1 in Maryland streams and estimated concentrations of up to 

1550 ng l-1 for streams surveyed previously by the USGS.  It has been suggested that TCS and 

TCC are likely among the most frequently occurring of organic wastewater contaminants behind 

such well-known WWTP markers as coprostanol, cholesterol, N,N-diethyltoluamide and caffeine 

(Halden and Paull, 2005).  In spite of a use rate of 500,000 – 1,000,000 pounds per year in the 

U.S.A., TCC had received little attention until the recent development of a liquid 

chromatography electrospray ionization mass spectrometry (LC/ESI/MS) method allowed 

successful TCC environmental analyses at the ng l-1 level (Halden and Paull, 2004).  TCC , TCS, 

and M-TCS have  relatively high log Kow values of 4.9, 4.8 (at pH 7.0), and 5.2, respectively, 

with sufficient predicted environmental persistence to bioconcentrate (Boehmer et al., 2004; 

Halden and Paull, 2004).  Thus, their environmental occurrence may serve as a general indicator 

of the extent of WWTP contaminant distribution exhibiting similar hydrophobicity and 

persistence.  

*Conflicting definitions of bioconcentration and bioaccumulation, along with their 

resultant bioconcentration and bioaccumulation factors (BCFs and BAFs), are evidenced in 

various literature sources.  Some have defined BCF as a ratio between biota and water 
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concentration measurements as a result of laboratory experimentation, while BAF is used as an 

expression of the same ratio in response to field measurements and food chain accumulation 

(Wright and Welbourn, 2002).  The Handbook of Ecotoxicology indicates bioconcentration 

within aquatic systems involves net accumulation into and onto an organism (Adams and 

Rowland, 2003).  Alternately, bioaccumulation refers to accumulation from any external place, 

such as water, food, or sediment.  For the purpose of this study, we will be using the term 

“bioaccumulation” to indicate general accumulation from the surrounding environment based on 

field measurements. 

*Aquatic toxicological bioaccumulation assessment methods are crucial in monitoring 

community effluent waters.  As various concentrations of persistent pharmaceuticals, hormones, 

and other wastewater contaminants continue to infiltrate water resources, increasingly sensitive 

biological methods of investigation need to be developed.  Bioaccumulation of lipophilic 

contaminants through aquatic food chains may result in significant body burdens at subsequent 

trophic levels.   

*Trophic transfer of lipophilic compounds within aquatic environments may result in high 

exposure concentrations among humans and wildlife that consume aquatic organisms (Jabusch 

and Swackhamer, 2004).  This study presents the first report on the bioaccumulation potential of 

TCS, TCC, and M-TCS as important components of WWTP receiving streams and the first 

report of TCC bioaccumulation in natural environments.  With urbanization and water reuse 

becoming major factors in municipal water quality, understanding the fate and occurrence of 

PPCPs in water supplies becomes increasingly important (Kolpin et al., 2002; Fitzhugh and 

Richter, 2004).  Investigating the bioaccumulation of these compounds and their impacts on 



 

 5

higher trophic levels in receiving streams will be required to meet the challenge of this 

urbanization process. 

Studies have shown that aquatic organisms are capable of bioaccumulating 

environmentally persistent organic chemicals with relatively high [Kow] (Zaranko et al., 1997).  

If it can be shown that high [Kow] compounds exhibit an increase in body burdens with an 

increase in trophic status after lipid content correction, then the potential for biomagnifications 

effects also exists (Zaranko et al., 1997).  This study, however, has solely considered 

bioaccumulation and algal lipid synthesis effects. 
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CHAPTER 2 

ALGAL BIOACCUMULATION OF TRICLOCARBAN (TCC), TRICLOSAN (TCS),  
AND METHYL-TRICLOSAN (M-TCS) IN A NORTH TEXAS  

WASTEWATER TREATMENT PLANT RECEIVING STREAM* 
 

Introduction 

*Algae comprise the greatest abundance of plant biomass in aquatic environments and are 

a logical choice for aquatic toxicological studies, yet have historically been underutilized in this 

capacity (Wetzel, 2001).  As primary producers of unique qualities, algae provide valuable links 

in food webs. In this study, we selected two commonly used antimicrobials as WWTP marker-

compounds to evaluate persistence, downstream distribution, and algal bioaccumulation of trace 

contaminants in an effluent-dominated receiving stream.  

 *Algal lipid concentrations range from 5 to 70% of dry weight, depending upon species 

considered and nutrient limitations; the most common range for lipid-storing species, however, is 

15 – 30% (Olsen, 1999).  (This study proposes a lipid mass of 19% for Cladophora spp. 

samples.)  Cladophora coelothrix, a ubiquitous Black Sea alga, was analyzed and found to 

contain approximately 23.7 mg/g dry weight lipid, with the majority (60.2%) being 

triacylglycerol (Nechev et al., 2002).  Polychlorinated biphenyl (PCB) uptake in phytoplankton 

is known to occur through cellular membrane diffusion; phytoplankton BAFs for PCBs with log 

Kow values < 6.0 to 6.5 have been reported to range from 4.7 to 5.2 (Stange and Swackhamer, 

1994) 

*Several algal species have been selected for bioaccumulation and aquatic toxicity tests.  

For example, the alga Raphidocelis subcapitata bioconcentrates xylene, benzene, toluene, and 

ethyl benzene at a rate which increases as the lipophilic nature of each compound increases 

                                                 
*   Portions of this chapter [identified with an asterisk (*)] were previously published in Chemosphere 67, 1911-
1918, and have been reproduced with permission from Elsevier. 
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(Haglund, 1997).  Cladophora has been used to quantify polychlorinated biphenyl (PCB) 

biomagnification in a Pottersburg Creek, London, ON, Canada riverine study (Zaranko et al., 

1997) while Larsson further identified the kinetics of PCB uptake in Cladophora glomerata 

(Larsson, 1987).    

Cladophora glomerata, and accompanying compartmental epiphytic species, are 

especially well-suited for effluent studies since they grow well both in the field and laboratory 

settings.  They are widely distributed and generally found growing on hard substrates of 

freshwater systems fed by urban sewage inflow and agricultural runoff (Dodds and Gudder, 

1992).  With excessive Cladophora growth during summer months in aquatic environments 

containing high nutrient concentrations, Cladophora compartments, also described as 

Cladophora mats, have the capability of becoming habitats for epiphytes, bacteria, aquatic 

macroinvertebrates, and small fish (Chilton et al., 1986).  Under these circumstances, the 

macroalgal mat, becomes a direct food source for generalized grazers, and, due to the relatively 

high lipid content of certain algal species, may provide the entry point of lipophilic compounds 

into the food chain of riparian systems (Dudley et al., 1986; Zaranko et al., 1997).   

 

Materials and Methods 

Sources of Chemicals 

*Labeled internal standards (13C12-TCS, 13C12-M-TCS), TCS, and M-TCS were from 

Wellington Laboratories (Guelph, ON, Canada).  The deuterated TCC (d7 TCC) internal 

standard was a gift from Cambridge Isotope Laboratories, Inc. (Andover, MA, USA), and TCC 

was from Absolute Standards (Hamden, CT, USA).  All other reagents and solvents were from 

Fischer Scientific (Houston, TX, USA). 
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Collection and Experimental Design 

 *Five collection sites, one upstream reference (Site 1), three downstream (Sites 3, 4, and 

5), and one at the WWTP (Site 2), were chosen along Pecan Creek, the receiving stream for the 

City of Denton, Texas, USA WWTP (Figure 1), along with the fifth site being the Trinity River 

access at the Lewisville Lake Environmental Learning Area (LLELA) (Figure 2).  Site 1 was 

identified with GPS coordinates Lat 33.20879 Lon 97.11148, Site 2 Lat 33.19362 Lon 97.07140, 

Site 3 Lat 33.18867 Lon 97.06418, Site 4 Lat 33.18301 Lon 97.04791, and Site 5 Lat 33.066722 

Lon 96.964166.  The stream channel lengths from Site 1 to Site 2, Site 2 to Site 3, Site 3 to Site 

4, and Site 4 to Site 5 were 6.2 km, 1.1 km,  2.7 km, and 30 km respectively.  Seven 60 ml 

Nalgene bottles were used to collect Cladophora spp. replicate samples and seven one-liter 

amber bottles to collect replicate grab samples from the surface water at collection Sites 1 

through 4 from 9/2/2005 through 9/5/2005.  The same collection regime was performed at Site 5 

on 2/5/2006.  Algal and water samples were handled using latex gloves, transported on ice to the 

laboratory, and maintained refrigerated at 4 °C until analysis. Effluent water quality during 

collection dates was typical of normal operating conditions of the plant according to Denton 

WWTP records.  Effluent pH averaged 7.4 (range 7.3 – 7.5), flow rates averaged 11.59 million 

gallons per day (range 10.86 – 12.95), total suspended solids averaged 1.2 mg l-1 (range 0.4 – 

2.0), and no precipitation was reported for the week prior to collection (personal communication, 

Gary Stover, City of Denton WWTP operator). 
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*Fig. 1  Location of the four collection sites on Pecan Creek (Denton, TX), the receiving stream 
for the City of Denton WWTP effluent discharge.  Stream length distances from Site 1 to Site 2 

were measured as being ~6 km and Site 2 to Site 4 as ~3 km. 
 
 
 

                
 

Fig. 2  Site distribution map showing where Cladophora and water samples were collected in 
relationship to Lake Lewisville, Denton County. 

 

 
Algal Lipid Extraction and Analysis 

*Algal samples were separated into 5.0 to 8.0 g sections after hand-washing the contents 

of each Nalgene bottle in two liter containers of Milli Q 18 MΩ deionized water and removing 
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visibly evident non-filamentous algal particles.  The fractionated sections were then transferred 

to another two liter container of Milli Q 18 MΩ deionized water, hand-agitated for further 

removal of non-visible particles (Stevenson and Bahls, 1999) and blot-dried with paper towels.  

Hereafter, blot-dried will be referred to as fresh weight and will apply to all algal concentration 

references (ie. ng/g fresh weight).  Random sections of each sample were removed and identified 

as Cladophora spp. by microscopic description at 10X magnification using G.W. Prescott’s 

illustrated key (Prescott, 1964).  For the purpose of this paper, a reference to Cladophora spp. 

samples and the resultant bioaccumulation is actually a reference to a more complex algal 

compartment (containing relatively small contributions of epiphytes and biofilm) of which the 

greatest biomass contribution is Cladophora spp.  

*Approximately 2.0 g (fresh weight) of algae, prepared as described above, were dried 

with 35.0 g anhydrous Na2SO4 for each replicate analyzed.  Algae and Na2SO4 were ground with 

mortar and pestle then placed in a 25 mm x 90 mm cellulose Soxhlet extraction thimble.  Ten µl 

of 5 ng µl-1 13C12 TCS, 13C12 M-TCS, and d7 TCC were added to each sample as internal 

standards. Soxhlets were heated to boiling for six hours and extracts (100 ml dichloromethane) 

were stored in amber bottles at 4 °C.  Extracts were reduced to 5 ml by Kuderna Danish (KD) 

evaporation in a water bath at 60 – 70 °C.  High molecular weight lipids were removed by gel 

permeation chromatography (GPC) with an ABC Laboratories (Columbia, MO, USA) Model 

SP-1000 GPC Processor according to manufacturer’s recommended procedures.  Samples were 

evaporated using a Labconco (Kansas City, MO, USA) RapidVap ™  nitrogen evaporator  to a 

final extract volume of 100 – 1000µl and analyzed by gas chromatography-mass spectrometry 

(GC/MS) for TCS and M-TCS and by electrospray liquid chromatography-mass spectrometry  

(ESI-LC/MS) for TCC (see Section 2.5).  



 

 12

Water Analysis 

 *Unfiltered one liter water samples were fortified with 10.0 µl of 5 ng µl-1 internal 

standard mix immediately prior to solid phase extraction (SPE).  Waters (Milford, MA, USA) 

Oasis HLB SPE cartridges (1.0 g) were conditioned with 10 ml each of dichloromethane, 

methanol, and Milli Q 18 MΩ deionized water. Cartridges were eluted with a 20 ml 90:10 

(dichloromethane:methanol) solution and resultant extracts were evaporated and analyzed as 

described above. 

 

Instrumental Analyses 

 *TCS and M-TCS analyses were conducted on an Agilent (Palo Alto, CA, USA) 6890 

GC coupled with a 5973 mass selective detector MS (70-eV).  An eight point standard curve was 

established with analyte concentrations from 5-1,000 pg µl-1 and internal standard concentrations 

at 500 pg µl-1.  The MS was operated in the single ion monitoring mode (SIM) with target and 3 

confirmatory masses monitored (50 msec dwell time) for each compound.  GC conditions were 

helium carrier gas at 480 hPa,  inlet temperature at 260 °C (2µl, pulsed pressure at 1,700 hPa for 

0.5 min, splitless injection), and column (Alltech, Deerfield, IL, USA; EC-5 30 m, 0.25 mm i.d., 

0.25 µm film) temperature initially at 40 °C with a 1-min hold followed by a 50 °C min-1 ramp to 

140 °C with a 5- min hold followed by a 10 °C min-1 ramp to 300 °C with a final 17-min bake-

out.  Transfer line temperature was 265 °C. 

*TCC was analyzed using a modification of the recently reported LC-ESI-MS method 

(Halden and Paull, 2004; Halden and Paull, 2005).   An Agilent 1100 LC/MS system was used 

with Model SL ion trap MS.  The column was a C18 (monomeric, non-endcapped) Zorbax (2.1 

X 150 mm) with a 5 µm particle size and 80 Å pore size.  Samples were autoinjected (1-5 µl) 
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with a gradient program (300 µl min-1 flow throughout) that was initiated at 70% mobile phase B 

(95% acetonitrile and 5% water with 5 mM ammonium acetate) and 30% mobile phase A (95% 

water and 5% acetonitrile with 5 mM ammonium acetate), held for 1.0 min then ramped to 85% 

B at 10 min and 100% B at 10.1 min through 25 min, then returned to 70% B from 25.1 to 35 

min.  The ion trap was operated in the negative ion multireaction monitoring mode (MRM) 

isolating m/z 313 and 315 for native TCC and m/z 320/322 for d7 TCC internal standard.  These 

isolated pseudo-molecular ions ([M-H]-) were fragmented (amplitude 0.8) to yield daughter ions 

at m/z 160 and 163 for native and d7 TCC, respectively.  Five point standard curves were 

established for both the pseudo-molecular ions and the daughter ions with TCC concentrations 

from 10-1,000 pg µl-1 and d7 TCC concentration of 50 pg µl-1.  The electrospray was operated 

with a nebulizer pressure of 2,100 hPa and nitrogen dry gas at eight l min-1 at 350 °C.   TCC and 

d7 TCC eluted at 7.5 min. 

*Practical quantitation limits (PQL, Table 1) were established at approximately 10X the 

instrument detection limit, which was estimated as 3X S.D. of background noise levels for 

quantitation ions.  Standard curves included PQL concentrations for each analyte. 

2.6  Statistical analyses 

 *For each contaminant, concentrations among sites were compared by a one-way analysis 

of variance (ANOVA) using the Base SAS software, Version 8.2 (SAS Institute, Cary, NC, 

USA, 1999-2000).  Supporting analyses included normality and a Student Newman Keul’s 

(SNK) test, which was used to separate means if any significant differences were observed.  The 

level of statistical significance for all analyses was α = 0.05. 
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Results 

Analytical Quality Control (QC) Results 

      *Recovery percentages for blank spike additions (50 ng/l for water samples and 25 ng/g 

for algal samples) ranged from 94% to 137%, with a mean of 113% for water analyses, and from 

80% to 107%, with a mean of 98% for algal analyses (Table 1).  Water column matrix spike and 

matrix spike duplicate recovery percentages ranged from 80% to 110%, with a mean of 96%, and 

80% to 140% for algal analyses, with a mean of 112%.   Overall, percent deviation for both 

water column and algal analyses of matrix spike duplicates ranged from 2.88% to 32.15%, with a 

mean of 11.2%.  No blank values exceeded the PQLs.  

*Table 1.  Quality Control data for antimicrobials in water and algae. Spike additions were at 50 
ng L-1 for water and 25 ng g-1 for algae. 

 

  Blk (ppb) 
Blk Spk  
Rec (%)  

Mat Spk  
Rec (%) 

Mat Spk Dup 
Rec (%) 

 Dup  
Dev (%) 

PQL 
(ppb) 

Water  
TCS < 0.010 109% 98% 101% 2.9% 0.01 
 
M-TCS < 0.005 137% 110% 101% 7.9% 0.005 
           
TCC < 0.015 94% 80% 84% 3.7% 0.015 
Algae   
TCS < 10.0 106% 130% 140% 7.7% 10 
     
M-TCS < 5.0 107% 111% 80% 32.2% 5 
           
TCC < 10.0 80% 111% 98% 12.8% 10 

(Blk = Blank, Spk = Spike, Rec = Recovery, Mat = Matrix, Dup = Duplicate, Dev = Deviation, PQL = Practical 
Quantitation Limits) 

 

Water Analyses 

 *We measured statistically significant differences in aqueous TCS and M-TCS 

concentrations from the WWTP outfall at Site 2 to Site 4, ranging from approximately 0.12 ppb 

TCS at Site 2 to 0.06 ppb TCS at Site 4, and 0.08 ppb M-TCS at Site 2 to 0.05 M-TCS at Site 4 

(Figure 3).  TCC concentration reductions were also noted, ranging from approximately 0.20 ppb 
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TCC at Site 2 to 0.08 ppb TCC at Site 4.  TCS, M-TCS, and TCC concentrations at the upstream 

reference site were less than the PQL and not reported.  In general, TCS, M-TCS, and TCC water 

column concentrations showed a modest but consistent die-away from the WWTP outfall to the 

mouth of Pecan Creek. 
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*Fig. 3 Mean and standard errors (one-way ANOVA, alpha = 0.05, n = 5) of TCC, TCS and M-

TCS concentrations in water from three selected sites on Pecan Creek, TX. Site means for a 
given antimicrobial (TCC, TCS, M-TCS) with different letters (a, b, c) are significantly different 

from the outfall. Concentrations from Site 1 (upstream from the outfall) and Site 5 (below the 
dam) were below detection limits (see Table 2). 

 

Algal Analyses 

*Only M-TCS concentrations in algae were statistically significantly different among 

collection sites (Figure 4).  Concentrations for TCS, M-TCS, and TCC at the upstream reference 

site were less than the PQL and not included. For TCC, the mean levels range from 

approximately 200 to 400 ppb.  Mean TCS algal concentrations were between 100-150 ppb.  

Mean M-TCS algal concentrations ranged from 50-90 ppb.   
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*Fig. 4  Mean and standard errors (one-way ANOVA, alpha = 0.05, n = 5) of TCC, TCS and M-

TCS concentrations in algae from three sites on Pecan Creek, TX. Site means for a given 
antimicrobial (TCC, TCS, M-TCS) with different letters (a, b) are significantly different from the 
outfall. Concentrations from Site 1 (upstream from the outfall) and Site 5 (below the dam) were 

below detection limits (see Table 2). 
 

*The somewhat lower TCS, M-TCS, and TCC concentrations within the algal 

compartment at the outfall in the presence of increased aqueous concentrations may be a result of 

reduced lipid content within algae nearest the point source of municipal WWTP effluent 

(Stevenson and Stoermer, 1982).  Depending upon nutrient and seasonal fluctuations, large 

amounts of epiphytic diatoms may be observed on Cladophora to the point of exceeding 

Cladophora biomass.  Stevenson and Stoermer’s investigation of Cladophora epiphyte 

population diversity and abundance supports the conclusion that undetermined factors near a 

WWTP point source may reduce epiphyte growth in spite of the presence of higher nutrient 

concentrations. 

 

Antimicrobial Bioaccumulation 

*We found mean TCS, M-TCS, and TCC bioaccumulation factors (BAFs) to be 

approximately three orders of magnitude greater than water concentrations (Table 2).   

a
b

a
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*Table 2. Algal bioaccumulation factors (BAFs) based on fresh weight. 

Contaminant MEDIUM SITE 1 SITE 2 SITE 3 SITE 4 SITE 5 
TCC WATER (ppb) <0.015 0.19 0.16 0.08 <0.015 
 ALGAE (ppb) <10 303 401 219 <10 
BAFs   1600 2500 2700  
       
TCS WATER (ppb) <0.01 0.12 0.08 0.06 <0.01 
 ALGAE <10 109 146 124 <10 
BAFs   900 1800 2100  
       
M-TCS WATER <0.005 0.08 0.06 0.05 <0.005 
 ALGAE <5 55 89 50 <5 
BAFs   700 1500 1000  

 

TCC BAFs ranged from 1600 at Site 2 to 2700 at Site 4, with a mean BAF value of about 2300.  

TCS BAFs ranged from 900 at Site 2 to 2100 at Site 4, with a mean BAF value of 1600.  M-TCS 

ranged from 700 at Site 2 to 1500 at Site 3, with a mean BAF value of 1100.  The relatively 

consistent algal concentrations of the three compounds, despite decreasing water concentrations, 

resulted in a general trend of increasing BAFs at downstream stations (Figure 5). 

Fig. 5  Algal bioaccumulation factors (BAFs), [algae]/[water], for TCC, TCS, and M- TCS at 
three selected sites on Pecan Creek, TX. 
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Discussion 

*This study explored whether TCS and TCC, along with the degradate M-TCS, 

bioaccumulate in a freshwater green algal compartment.   Our analysis of this surface water 

downstream of the Denton WWTP confirms the co-occurrence of TCS and TCC previously 

reported (Halden and Paull, 2005), with TCC values consistently exceeding those of TCS.  

Bioaccumulation of hydrophobic compounds in phytoplankton has been previously investigated 

(Jabusch and Swackhamer, 2004).  With the ability of certain algal species to produce 

triacylglycerols comprising up to 60% of their body weight, phytoplankton introduction of 

persistent bioaccumulative toxic compounds into aquatic food webs and their resultant trophic 

transfer presents the possibility of toxic exposure concentrations for humans and wildlife 

(Zaranko et al., 1997; Jabusch and Swackhamer, 2004). 

 

Macroalgae as Biomonitoring Organisms for  
Bioaccumalative Contaminants 

 
*Past studies have indicated significant losses of pharmaceuticals downstream from 

WWTP discharges, due to degradation, dilution, and sorption (Singer et al., 2002; Boyd et al., 

2003).  With algal BAF values approximating three orders of magnitude throughout this 3.8 km 

downstream reach of Pecan Creek (Sites 2 – 4), the potential contribution of antimicrobials to 

aquatic organism toxicity is worth further investigation.    Seasonal water effects regarding 

receiving stream antimicrobial concentrations have indicated the highest concentrations are 

reported during summer months (Waltman et al. 2006), which is also the season of rapid growth 

for many aquatic organisms.  Highest levels of trophic transfer for lipophilic compounds may 

also be seen during this critical time period, resulting in the greatest potential for chemical 
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movement through both aquatic and terrestrial biota that rely upon the aquatic organism as a 

food source. 

 

Potential Risks to Algae of Chronic Releases of 
TCC, TCS, and M-TCS to the Environment 

 
 *Aquatic toxicity of TCS has been demonstrated at concentrations higher than that 

typically found in WWTP receiving streams.  Algae are especially sensitive to antimicrobials 

such as TCS (Orvos et al., 2002; Wilson et al., 2003).  The algal species Scendedesmus 

subspicatus was reported to have a 96-h effective concentration (EC50) for growth of 1.4µg l-1 

and a 96-h no-observed-effect concentration (NOEC) of 0.69  

µg l-1 (Orvos et al., 2002).  With noticeable alterations in algal community structure at TCS 

concentrations of 0.12µg l-1, further understanding of the effects of antimicrobials on community 

dynamics may also contribute to the use of algae as xenobiotic bioindicators (Wilson et al., 

2003).   

Although much less is known about the potential toxicity of M-TCS, information 

regarding TCC toxicity results can be found in unpublished industry reports.  Based on existing 

data, indications are that algae, represented by Selenastrum sp., Microcystis sp., and Navicula 

sp., are unaffected at any ppt range (downloaded from TCC Consortium, 2002). 
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CHAPTER 3 

SNAIL BIOACCUMULATION OF TRICLOCARBAN (TCC), TRICLOSAN (TCS),  
AND METHYL TRICLOSAN (M-TCS) IN A NORTH TEXAS  

WASTEWATER TREATMENT PLANT RECEIVING STREAM* 
 

Introduction 
 

Helisoma trivolvis (Say) is an appropriate aquatic snail to use for bioaccumulation 

studies, and may elucidate the understanding of effluent antimicrobial bioaccumulation when 

investigated in conjunction with Cladophora spp.  Along with providing substrate for epiphytic 

growth, Cladophora spp. provide a source of food and shelter for invertebrates such as aquatic 

snails (Chilton et al., 1986).  As a freshwater pulmonate of ubiquitous existence throughout 

North America, and one that is easily maintained under standard laboratory conditions, H. 

trivolvis, also known as the “ramshorn” snail, is useful in ecological investigations (Thomas et 

al., 1975; Simonyi-Poirier et al., 2003).  Past studies have identified the occurrence of H. 

trivolvis to be within a variety of eutrophic freshwater systems, such as lakes, creeks, swamps 

and canals (Russell-Hunter et al., 1984). 

 H. trivolovis contains a radula and gizzard that allow it to graze easily on both periphyton 

and macroalgal species such as Cladophora, which gives this snail a unique place in trophic 

studies (Smith, 1988; Pennak, 1989; Lombardo and Cooke, 2002).  H. trivolvis tends to remain 

sedentary, and therefore has also been successfully used in artificial substrate studies (Simonyi-

Poirier et al., 2003).  The grazing activities of freshwater snails promote nutrient turnover within 

algal communities (Wallace and Hutchens, 2000), which may include associated concentrations 

of environmental pollutants such as triclosan (TCS), triclocarban (TCC), and methyl-triclosan 

(M-TCS).   

                                                 
*  Portions of this chapter [identified with an asterisk (*)] were previously published in Chemosphere 67, 1911-1918, 
and have been reproduced with permission from Elsevier. 
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 Traditionally, extrapolating invertebrate toxicological data to that of vertebrates has been 

difficult, due to differences in biological and physiological processes.  Chemical fate differs 

among invertebrates when compared to vertebrates due to the morphology and anatomy of 

organs; xenobiotic excretion via urine or bile also plays a greater role in toxicant clearance 

among vertebrates (Lagadic and Caquet, 1998).  Invertebrates have, however, been successfully 

implemented as environmental toxicological test species, leading to the development of various 

invertebrate bioassays  used in addition to those obtained for vertebrates (Lagadic and Caquet, 

1998).   

As agents of possible bioaccumulation, aquatic organisms have also been shown to 

accumulate relatively high lipophilic compounds, such as polychlorinated biphenyls (PCBs), at 

greater concentrations than would be expected from water /tissue partitioning (Evans et al., 

1991).  Bioaccumulation studies using algae spiked with various concentrations of relatively 

high log Kow compounds, such as benzo(a)pyrene and polychlorinated biphenyl (PCB) 

congeners, indicate the Zebra Mussel, Dreissena polymorpha, may contribute to the trophic 

transfer of these environmental pollutants (Bruner et al., 1994).   

Another study successfully used Helisoma trivolvis and periphyton as test species to 

investigate dissolved metal retention in Monahan Pond in Kanata, Ontario (Canada), a 

constructed treatment wetland built in 1995 (Simonyi-Poirier et al., 2003).  Although metal 

retention and lipophilic accumulation are variable within treatment wetlands, further studies 

using aquatic organisms at the base of the food web may contribute to a better understanding of 

these dynamics.  Chemical uptake among phytoplankton, along with that of macrophytes and 

filamentous algae such as Cladophora, follows first-order kinetics due to the rapid 

bioaccumulative nature; the movement of lipophilic compounds, such as PCBs, to higher trophic 
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levels is assisted by the grazing activities of aquatic macroinvertebrates such as chironomids 

(Zaranko et al., 1997) and possibly snails.  If aquatic life, and those organisms that rely on 

aquatic life as sources of energy, are to be adequately protected, it is imperative that further 

studies investigating food web relationships and organismal bioenergetics be conducted (Zaranko 

et al., 1997).  The objective of this study was to investigate the potential movement of TCC, 

TCS, and M-TCS into a trophic level of organisms involved in algal grazing activities at the 

outfall of the Denton WWWTP.       

 

Materials and Methods 

Sources of Chemicals 

Labeled internal standards (13C12-TCS, 13C12-M-TCS), TCS, and M-TCS were from 

Wellington Laboratories (Guelph, ON, Canada).  The deuterated TCC (d7 TCC) internal 

standard was a gift from Cambridge Isotope Laboratories, Inc. (Andover, MA, USA), and TCC 

was from Absolute Standards (Hamden, CT, USA).  All other reagents and solvents were from 

Fischer Scientific (Houston, TX, USA). 

 

Collection and Experimental Design 

 Clean (non-detectable TCC, TCS, and M-TCS levels) Helisoma trivolvis and Cladophora 

spp.samples were collected on 7/09/2006 from the Lewisville Lake Environmental Learning 

Area (LLELA), Lewisville, TX with GPS coordinates Lat 33.066722 Lon 96.964166. The 

original site location of the H. trivolvis collection was the Lewisville Aquatic Ecosystem 

Research Facility (LAERF) Potamogeton pond.  Snail identification was confirmed by Dr. 

Robert T. Dillon, Jr., (Department of Biology, College of Charleston, S.C.).  Cladophora 
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samples were collected from the Trinity River below the Lewisville Lake dam (Site 5 in Chapter 

1).  This location was selected since previous site analyses indicated non-detectable levels of 

TCC, TCS, and M-TCS in samples collected below the Lewisville Lake dam (Coogan et al., 

2007).  Random sections of each sample were removed and identified as Cladophora spp. by 

microscopic description at 10X magnification using G.W. Prescott’s illustrated key (Prescott, 

1964). Three 60 ml Nalgene bottles were used to hold Helisoma trivolvis replicate samples and 

three 60 ml Nalgene bottles were used to hold Cladophora spp. replicate samples. 

Two cages were constructed and placed at the WWTP outfall (Site 2 in Chapter 1) of 

Pecan Creek, the receiving stream for the City of Denton, Texas, USA WWTP (Figure 6).  Cages 

were constructed from 11.4 cm PVC pipes cut into 30.5 cm lengths.  Caps at each end held 

sections of 1.0 mm mesh in place.  Holes were drilled through each cap for the purpose of 

attaching two one-meter long rebars while in the field in order to secure the cages to the 

substrate.  Each cage contained a 10.2 cm by 20.3 cm “window” that was cut into the center of 

the 11.4 cm PVC pipe.  The window was covered with sections of 1.0 mm mesh adhered with 

silicon to the PVC pipe (Figure 7).  Roughly 40 grams of algae and 42 snails were placed in each 

cage and left for a two-week total exposure at a depth of approximately 6 cm below the water’s 

surface before chemical analyses were performed (Figure 8).  After two weeks, the algae and 

snails were removed from the cages and placed back in their respective Nalgene bottles.  Seven 

one-liter amber bottles were used to collect replicate grab samples from the surface water. All 

samples were handled using latex gloves, transported on ice to the laboratory, and maintained 

refrigerated at 4 °C until analysis. Effluent water quality during collection dates was typical of 

normal operating conditions of the plant according to Denton WWTP records.  Effluent pH 

averaged 7.4 (range 7.3 – 7.5), flow rates averaged 11.59 million gallons per day (range 10.86 – 
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12.95), total suspended solids averaged 1.2 mg l-1 (range 0.4 – 2.0), and no precipitation was 

reported for the week prior to collection (personal communication, Gary Stover, City of Denton 

WWTP operator). 

 

 

Fig. 6. Caged snail placement just below the outfall of the Denton Wastewater Treatment Plant. 
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Fig. 7.  Photograph showing cage construction. 
 
 

 
 
Fig. 8  Placement of cages containing algae and snails was approximately 6 cm below surface of 

water. 
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Snail Lipid Extraction and Analysis 

Linear shell measurements were made of maximum shell diameter (MD) in cm, with 

snail sizes varying from 1.5 cm in diameter to 2.0 cm in diameter.  While in the laboratory 

setting, snails were maintained below 0 °C, following which the shell was broken away from the 

underlying body tissue using a scalpel, scissors, and forceps (Pennak, 1989).  After separation 

from the shell, the animal was first weighed and once again maintained below 0 °C before 

further processing.  It was determined that 6 to 8 snails provided adequate tissue for each 2.0 g 

(fresh weight) sample. 

Approximately 2.0 g of snail tissue, prepared as described above, were used for each 

replicate sample analyzed.  Eight 2.0 g samples, including a matrix, matrix spike, and matrix 

spike duplicate, were prepared and analyzed after collection from LAERF and will be referred to 

as the “Clean Snail” samples.  Eight samples were also prepared and analyzed following Pecan 

Creek field exposure and will be referred to as the “Caged Snail” samples.  Each replicate tissue 

sample was dried with 35.0 g anhydrous Na2SO4 by grinding with mortar and pestle then placed 

in a 25 mm x 90 mm cellulose Soxhlet extraction thimble.  Ten µl of 5 ng µl-1 13C12 TCS, 13C12 

M-TCS, and d7 TCC were added to each sample as internal standards. Soxhlets were heated to 

boiling for six hours and extracts (100 ml dichloromethane) were stored in amber bottles at 4 °C.  

Extracts were reduced to 5 ml by Kuderna Danish (KD) evaporation in a water bath at 60 – 70 

°C.  High molecular weight lipids were removed by gel permeation chromatography (GPC) with 

an ABC Laboratories (Columbia, MO, USA) Model SP-1000 GPC Processor according to 

manufacturer’s recommended procedures.  Samples were evaporated using a Labconco (Kansas 

City, MO, USA) RapidVap ™  nitrogen evaporator  to a final extract volume of 100 – 1000µl 

and analyzed by gas chromatography-mass spectrometry (GC/MS) for TCS and M-TCS and by 
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electrospray liquid chromatography-mass spectrometry  (ESI-LC/MS) for TCC [see Instrument 

Analysis section, below].  

 

Algal Lipid Extraction and Analysis 

*Caged algal samples were separated into 5.0 to 8.0 g sections after hand-washing the 

contents of each Nalgene bottle in two liter containers of Milli Q 18 MΩ deionized water and 

removing visibly evident non-filamentous algal particles.  The fractionated sections were then 

transferred to another two liter container of Milli Q 18 MΩ deionized water, hand-agitated for 

further removal of non-visible particles (Stevenson and Bahls, 1999), and blot-dried with paper 

towels.  Hereafter, blot-dried will be referred to as fresh weight and will apply to all algal 

concentration references (ie. ng/g fresh weight).  For the purpose of this paper, a reference to 

Cladophora spp. samples and the resultant bioaccumulation is actually a reference to a more 

complex algal compartment of which the greatest biomass contribution is Cladophora spp.  

*Approximately 2.0 g (fresh weight) of algae, prepared as described above, was dried 

with 35.0 g anhydrous Na2SO4 for each replicate analyzed.  Algae and Na2SO4 were ground with 

mortar and pestle then placed in a 25 mm x 90 mm cellulose Soxhlet extraction thimble.  Ten µl 

of 5 ng µl-1 13C12 TCS, 13C12 M-TCS, and d7 TCC were added to each sample as internal 

standards. Soxhlets were heated to boiling for six hours and extracts (100 ml dichloromethane) 

were stored in amber bottles at 4 °C.  Extracts were reduced to 5 ml by Kuderna Danish (KD) 

evaporation in a water bath at 60 – 70 °C.  High molecular weight lipids were removed by gel 

permeation chromatography (GPC) with an ABC Laboratories (Columbia, MO, USA) Model 

SP-1000 GPC Processor according to manufacturer’s recommended procedures.  Samples were 

evaporated using a Labconco (Kansas City, MO, USA) RapidVap ™  nitrogen evaporator  to a 
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final extract volume of 100 – 1000µl and analyzed by gas chromatography-mass spectrometry 

(GC/MS) for TCS and M-TCS and by electrospray liquid chromatography-mass spectrometry  

(ESI-LC/MS) for TCC [see Instrument Analysis section, below].  

  

Water Analysis 

 *Unfiltered one liter water samples were fortified with 10.0 µl of 5 ng µl-1 internal 

standard mix immediately prior to solid phase extraction (SPE).  Waters (Milford, MA, USA) 

Oasis HLB SPE cartridges (1.0 g) were conditioned with 10 ml each of dichloromethane, 

methanol, and Milli Q 18 MΩ deionized water. Cartridges were eluted with a 20 ml 90:10 

(dichloromethane:methanol) solution and resultant extracts were evaporated and analyzed as 

described above. 

 

Instrumental Analyses 

 *TCS and M-TCS analyses were conducted on an Agilent (Palo Alto, CA, USA) 6890 

GC coupled with a 5973 mass selective detector MS (70-eV).  An eight point standard curve was 

established with analyte concentrations from 5-1,000 pg µl-1 and internal standard concentrations 

at 500 pg µl-1.  The MS was operated in the single ion monitoring mode (SIM) with target and 3 

confirmatory masses monitored (50 msec dwell time) for each compound.  GC conditions were 

helium carrier gas at 480 hPa,  inlet temperature at 260 °C (2µl, pulsed pressure at 1,700 hPa for 

0.5 min, splitless injection), and column (Alltech, Deerfield, IL, USA; EC-5 30 m, 0.25 mm i.d., 

0.25 µm film) temperature initially at 40 °C with a 1-min hold followed by a 50 °C min-1 ramp to 

140 °C with a 5- min hold followed by a 10 °C min-1 ramp to 300 °C with a final 17-min bake-

out.  Transfer line temperature was 265 °C. 
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*TCC was analyzed using a modification of the recently reported LC-ESI-MS method 

(Halden and Paull, 2004; Halden and Paull, 2005).   An Agilent 1100 LC/MS system was used 

with Model SL ion trap MS.  The column was a C18 (monomeric, non-endcapped) Zorbax (2.1 

X 150 mm) with a 5 µm particle size and 80 Å pore size.  Samples were autoinjected (1-5 µl) 

with a gradient program (300 µl min-1 flow throughout) that was initiated at 70% mobile phase B 

(95% acetonitrile and 5% water with 5 mM ammonium acetate) and 30% mobile phase A (95% 

water and 5% acetonitrile with 5 mM ammonium acetate), held for 1.0 min then ramped to 85% 

B at 10 min and 100% B at 10.1 min through 25 min, then returned to 70% B from 25.1 to 35 

min.  The ion trap was operated in the negative ion multireaction monitoring mode (MRM) 

isolating m/z 313 and 315 for native TCC and m/z 320/322 for d7 TCC internal standard.  These 

isolated pseudo-molecular ions ([M-H]-) were fragmented (amplitude 0.8) to yield daughter ions 

at m/z 160 and 163 for native and d7 TCC, respectively.  Five point standard curves were 

established for both the pseudo-molecular ions and the daughter ions with TCC concentrations 

from 10-1,000 pg µl-1 and d7 TCC concentration of 50 pg µl-1.  The electrospray was operated 

with a nebulizer pressure of 2,100 hPa and nitrogen dry gas at eight l min-1 at 350 °C.   TCC and 

d7 TCC eluted at 7.5 min. 

Practical quantitation limits (PQL, Table 3) were established at approximately 10X the 

instrument detection limit, which was estimated as 3X S.D. of background noise levels for 

quantitation ions.  Standard curves included PQL concentrations for each analyte. 

 

Statistical Analyses 

Snail data collected before the two week exposure to effluent waters (Clean Snails) were 

compared to snail data collected after the two week exposure (Caged Snails) and analyzed by T-

Test for statistical significance (Microsoft Excel, Microsoft Office XP, Copyright Microsoft 



 

 32

Corporation 1985-2001).  The level of significance for all analyses was α = 0.05. 

 

Results 

Analytical Quality Control (QC) Results 

      Recovery percentages for blank spike additions (50 ng/l for water samples and 25 ng/g 

for algal and snail samples) ranged from 87% to 127%, with a mean of 113% for water analyses, 

from 103% to 115%, with a mean of 108% for algal analyses, from 93% to 127% with a mean of 

106% for Clean Snail analyses, and from 102% to 114% with a mean of 106% for Caged Snail 

analyses (Table 3).  Water column matrix spike and matrix spike duplicate recovery percentages 

ranged from 91% to 110%, with a mean of 98%, from 73% to 140% for algal analyses, with a 

mean of 105%, from 88% to 143% for Clean Snail analyses, with a mean of 108%, and from 

44% to 114% for Caged Snail analyses, with a mean of 91%.   Overall, percent deviation for 

water column, algal, Clean Snail, and Caged Snail analyses of matrix spike duplicates ranged 

from 0.53% to 62.8%, with a mean of 14.1%.  No blank values exceeded the PQLs. 

Table 3.  Quality control data for antimicrobials in water, algae, and snails. Spike additions were 
at 50 ng L-1 for water and 25 ng g-1 for algae and snails. 

 

  Blk 
(ppb) 

Blk Spk 
Rec (%) 

M S  
Rec (%) 

M S Dup  
Rec (%) 

M S Dup 
Dev (%) 

PQL 
(ppb) 

Water TCS < 0.010 87 96.6 90.9 6.1 0.01 
 M-TCS < 0.005 96.8 96.4 92.7 3.9 0.005 
 TCC < 0.015 127.4 113.1 95.6 16.8 0.015 

Algae TCS < 10.00 105.2 82.4 114.1 32.3 10 
 M-TCS < 5.000 103.1 100.7 121.3 18.6 5 

 TCC < 10.00 115.2 73 139.8 62.8 10 
Clean Snails TCS < 10.00 93.2 142.9 119.8 1.8 10 

 M-TCS < 5.000 96.6 87.6 88.1 0.53 5 
 TCC < 10.00 127.1 108.3 100.3 7.6 10 

Caged Snails TCS < 10.00 113.8 85.2 44.4 12 10 
 M-TCS < 5.000 102.2 109.1 114.1 4.5 5 
 TCC < 10.00 102.4 96.2 99 2.8 10 

(Blk = Blank, Spk = Spike, Rec = Recovery, Mat = Matrix, Dup = Duplicate, Dev = Deviation, PQL = Practical 
Quantitation Limits) 
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Snail Tissue Analyses 

Statistically significant differences for TCS, TCC, and M-TCS concentrations (ppb) in snail 

tissue occurred after being caged for two weeks in Pecan Creek at the Denton WWTP outfall 

(Figure 9).   TCS Clean Snail concentrations were measured at 5.9 ppb net weight and increased 

to 58.7 ppb in Caged Snail tissue.  TCC Clean Snail concentrations were measured at 9.8 ppb 

and increased to 299.3 ppb in Caged Snail tissue.  M-TCS Clean Snail concentrations were 

measured at 0.8 ppb and increased to 49.8 ppb in Caged Snail tissue (Table 4). 
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Fig. 9  Means and standard errors (α = 0.05, n = 5) of TCC, TCS and M-TCS concentrations in 
Clean and Caged Snails from the Denton WWTP outfall on Pecan Creek, TX.  Histograms do 

not compare compounds, but compare means within each compound.  Means for a given 
compound with different corresponding letters are significantly different (TCS – a, b; TCC – α, 

β; M-TCS – A, B). 
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Table 4.  Clean and caged snails replicate concentrations (ppb) at each collection site and 
calculated means for TCS, M-TCS, and TCC. 

Contaminant Medium A (ng/g) B (ng/g) C (ng/g) D (ng/g) E (ng/g) Mean 
(ng/g ) 

TCS Clean Snails 11.4 0 18.3 0 0 5.9 
 Caged Snails  62.2 49 65.4 52.2 64.6 58.7 

M-TCS Clean Snails 3.9 0 0 0 0 0.77 
 Caged Snails  53.5 45.4 53.8 54 42.2 49.8 

TCC Clean Snails 5.4 5.2 25.6 5.2 7.4 9.8 
 Caged Snails  170.6 228.9 310.2 179.2 607.6 299.3 

 

Water and Algal Tissue Analyses 

TCS water concentrations from samples collected at the Denton WWTP outfall were 

measured at 0.11 ppb (Figure 10).  A concentration of 162.5 ppb was detected in algal tissue that 

had been caged and grazed for two weeks at the same location (Figure 11).  TCC water 

concentrations were measured at 0.19 ppb and increased to 367.3 ppb in algal tissue.  M-TCS 

water concentrations were measured at 0.04 ppb and increased to 50.4 ppb in algal tissue (Table 

5). 
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Fig. 10  Means and standard errors (n = 5) of TCC, TCS and M-TCS concentrations (ppb) in 

water samples from the Denton WWTP outfall on Pecan Creek, TX. 
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Fig. 11.  Means and standard errors (n = 5) of TCC, TCS and M-TCS concentrations (ppb) in 

algal samples from the Denton WWTP outfall on Pecan Creek, TX. 
 

Table 5.  Replicate aqueous and algal concentrations (ppb) and calculated means for TCS, M-
TCS, and TCC. 

 
 

Contaminant Medium A  B  C  D  E  Mean  

TCS Water (µg/L) 0.117 0.118 0.102 0.12 0.102 0.112 
 Algae (ng/g) 132.8 125.8 144 205 205 162.5 

M-TCS Water (µg/L) 0.042 0.042 0.039 0.037 0.04 0.04 
 Algae (ng/g) 42 35.5 51.4 61.9 61.1 50.38 

TCC Water (µg/L) 0.194 0.189 0.18 0.16 0.233 0.191 
 Algae (ng/g) 356.8 340.4 358.8 290 490.4 367.3 

 

Antimicrobial Bioaccumulation 

*We found mean TCC and M-TCS bioaccumulation factors (BAFs) to be approximately 

three orders of magnitude greater in the Caged Snail samples collected from the DWWTP 

outfall.  The TCS BAF results were not as great as the other compounds of interest, but 

maintained a relatively high value of approximately 500.  The TCC BAF result was 1600 and the 
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M-TCS BAF result was 1200 (Table 6).  The relatively high concentrations of TCC measured in 

snail tissue and relatively low TCS concentrations measured in snail tissue resulted in the 

comparatively reduced BAF value of TCS.  The relatively low aqueous concentrations of M-TCS 

measured resulted in a mid-range BAF value (Figure 12).   

Table 6.  Snail bioaccumulation factors (BAFs) based on antimicrobial concentrations (ppb). 

Contaminant Medium Results 
TCC Water (ppb) 0.19 

 Snails (ppb) 299.3 
BAF  1600 
TCS Water (ppb) 0.11 

 Snails (ppb) 58.7 
BAF  500 

M-TCS Water (ppb) 0.04 
 Snails (ppb) 49.8 

BAF  1200 
 

 

 

 

 

 

 

 

 

 

 
Fig. 12  Caged snail bioaccumulation factors (BAFs) for TCS, TCC, and M-TCS at the Denton 

WWTP outfall on Pecan Creek, TX. 
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Discussion 

This study explored whether TCS and TCC, along with the degradate M-TCS, 

bioaccumulate in snail tissue.   Our analyses of H. trivolvis and Cladphora spp. following a two 

week period of being caged and immersed  in the WWTP receiving stream system 

confirm the co-occurrence of TCS and TCC previously reported (Halden and Paull, 2005), with 

TCC values consistently exceeding those of TCS.  Snail BAFs were approximately three orders 

of magnitude for TCC, TCS, and M-TCS.  The algal BAF for TCC was the same as was reported 

in Chapter 1, with TCS values reduced almost by half and M-TCS values almost doubled.  

Considering the biota measured in the snail bioaccumulation study had been caged, as opposed 

to being allowed to grow under normal field conditions, the results may have been affected.  

Grazing studies conducted by Hunter (1980) with Lymnaea elodes indicated grazing has the 

capability of altering algal standing crop community composition by removing large epiphytic 

diatoms and allowing smaller diatoms, such as Gomphonema and Cocconeis, to flourish (Hunter, 

1980). 

 

Aquatic Snails as Biomonitoring Organisms for Bioaccumalative Contaminants 

The interactions between primary producers and their consumers provide an important 

foundation for bottom-up control of aquatic food webs (Lamberti et al., 1989).  Since a large 

percentage of aquatic invertebrates (and fish) consume periphyton during some portion of their 

life stages (Lamberti, 1996), it would follow that studies investigating bioaccumulation of 

pollutants, such as hydrophobic organic contaminants (HOCs), at the base of the aquatic food 

web should be conducted.  Better understanding of this entry point is needed, since factors 

influencing uptake are not well understood (Wallberg et al., 2001).  How these pollutants are 
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partitioned among various plankton within aquatic systems probably influences water column 

residence time and potential trophic transfer (Wallberg et al., 2001). 

Several aquatic snail bioaccumulation studies investigating uptake of various hydrophilic 

and hydrophobic compounds have been previously conducted.  Helisoma trivolvis, in 

conjunction with periphyton, was successfully used in a constructed treatment wetland study 

investigating dissolved metal retention (Simonyi-Poirier et al., 2003).  Cadmium and lead 

bioaccumulation potentials have been investigated by using the snail Physaintegra (Spehar et al., 

1978).  Arsenic and chromium bioaccumulation potentials in eipgean and hypogean freshwater 

macroinvertebrates were studied by using the freshwater snail Physa fontinalis (Canivet et al., 

2001).  Environmental studies using the snail Helisoma have also been conducted to determine 

the bioaccumulation potential of hexachlorobenzene in aquatic systems (Isensee et al., 1976).  

This study is the first to investigate the bioaccumulation potential of TCC, TCS, and M-TCS by 

using the aquatic snail Helisoma trivolvis. 

 

Potential Risks to Animals of Chronic TCC, TCS, and M-TCS  
Releases to the Environment 

 
 As was indicated in Chapter 1, “With the ability of certain algal species to produce 

triacylglycerols comprising up to 60% of their body weight, phytoplankton introduction of 

persistent bioaccumulative toxic compounds into aquatic food webs and their resultant trophic 

transfer presents the possibility of toxic exposure concentrations for humans and wildlife 

(Zaranko et al., 1997; Jabusch and Swackhamer, 2004).”  1TCS aquatic toxicity studies have 

indicated rainbow trout have a reported median EC50 of 350 µg l-1 and a NOEC of 34 µg l-1 

(Balmer et al., 2004).  TCS levels up to 47 mg kg-1 fresh weight have been discovered in the bile 

of fish living in several Swedish WWTP receiving waters.  The same study identified high TCS 
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levels among three of five randomly selected human milk samples, with one sample as high as 

300 µg kg-1 lipid weight (Adolfsson-Erici et al., 2002). The mechanism of toxicity in metazoans 

has received little attention but a recent study has indicated TCS induces mitochondrial 

depolarization and impairment of energy metabolism in animals cells at concentrations greataer 

than 10 nmol mg-1 (Newton et al., 2005) as well as  inhibition of sulfotransferases important in 

phase II detoxification mechanisms (Wang and James, 2006).  

*Possible bacterial modes of action of TCS include the blockage of lipid synthesis. The 

trans-2-enoyl-ACP reductase in E. coli, known as FabI, regulates fatty acid synthesis and is 

inhibited by TCS (Sivaraman et al., 2004).  This has led to concern that chronic exposure of 

natural bacterial populations in receiving streams might lead to development of strains cross-

resistant to antibiotics.  Strain-specific cross-resistance to chloramphenicol has been verified by 

TCS-adapted E. coli K-12, trimethoprim by E. coli O55, and chloramphenicol, tetracycline, 

amoxicillin, trimethorim, benzalkonium chloride, and chlorohexidine by E. coli O157:H7   

(Braoudaki and Hilton, 2004).    

*As was indicated in Chapter 1, much less is known about the potential toxicity of M-

TCS.  Environmental levels are similar to other persistent chlorinated trace organic pollutants.  

With a log Kow value of 5.2, M-TCS persistence suggests a relatively high bioaccumulation 

potential in fish and other aquatic organisms (Balmer et al., 2004).  Bioaccumulation of M-TCS 

was confirmed in a Lake Griefensee study in which fish tissue concentrations ranged from 165 – 

300 ng g-1 lipid when compared to lake water concentrations of 0.8 -1.2 ng l-1 (Balmer et al., 

2004).  Our results indicating increased dominance of M-TCS in algal tissues were similar to 

those found in a retrospective study of fish tissues from German rivers contaminated by WWTP 

effluent (Boehmer et al., 2004). 
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 *As was also indicated in Chapter 1, TCC toxicity results are limited to unpublished 

industry reports.  For aquatic insects, the existing few data indicate no toxic effects in the ppt 

range for freshwater invertebrates, but chronic reproduction effects for estuarine mysid shrimp 

are reported in the environmentally relevant range of 60 to 125 ppt (downloaded from TCC 

Consortium, 2002).  TCC toxicity has been reported for a variety of mammals.  Reproduction 

and offspring survival rates decrease in rats and rabbits in response to elevated TCC levels.  

Additionally, TCC is known to cause methemoglobinemia (“Blue Baby” Syndrome) in humans 

(Johnson et al., 1963; Nolen and Dierckman, 1979).  Cleavage of the carbon-nitrogen bonds and 

resultant release of N-hydroxylated metabolites at elevated pH and temperature results in primary 

aromatic amine production and increased incidence of methemolgobinemia (Johnson et al., 1963; 

Ponte, 1974).  Mono- and dichlorinated anilines, environmentally persistent TCC breakdown 

products, are also known to express ecotoxicity, genotoxicity, and hematotoxicity (Gledhill, 

1975; Boehncke et al., 2003).  For aquatic insects, no toxic effects in the ppt range for freshwater 

invertebrates are indicted, but chronic reproduction effects for mysid shrimp are reported in the 

environmentally relevant range of 60 to 125 ppt (downloaded from TCC Consortium, 2002). 

 With multiple methods of stream analyses available, it could be difficult to determine 

which is most beneficial.  Evolution has established a unique relationship between riparian 

vegetation and stream invertebrates (Cummins et al., 1989).  A well-established relationship such 

as this could provide either a foundation or a complement to municipal receiving stream 

evaluations.    
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CHAPTER 4 

EFFECTS OF TRICLOSAN (TCS) ON ALGAL LIPID SYNTHESIS* 

Introduction 

Whole effluent toxicity (WET) tests, better known as “kill ‘em and count ‘em” tests, have 

been the traditional method of assessing aquatic system health among wastewater treatment plant 

(WWTP) receiving streams.  Unfortunately, with the consistent application of pharmaceuticals 

and personal care products (PPCPs) into municipal receiving stream systems, these methods of 

assessment may produce results well after irreversible habitat damage and potential cascading 

effects have occurred.  More sensitive evaluation methods, which require a better understanding 

of subtle biochemical or molecular biological effects, in conjunction with traditional WET tests 

are needed to help determine future health and to determine which regulatory measures are 

required to protect these delicate aquatic systems (Chapman, 2000).  

The significance of this study is in the development of aquatic toxicological bioassay 

methods with algae, which could be beneficial to monitoring effluent quality in the presence of 

specific emerging contaminants such as triclosan (TCS).  As primary producers with unique 

characteristics, algae are the base of most aquatic food webs and provide valuable food web 

links, along with lipophilic xenobiotic uptake capabilities (Haglund, 1997).  Among all aquatic 

organisms used to study toxic effects of  (TCS), algae and cyanobacteria appear to express the 

greatest responses at the lowest concentrations (Orvos et al., 2002).  Results indicate that algae 

exposed to TCS at levels of 3.4, 6.3, and 13 µg l-1 for 4 days result in impaired growth, but not 

death (Orvos et al., 2002).  Further studies have confirmed that a specific green algal species, 

                                                 
* Portions of this chapter [identified with an asterisk (*)] were previously published in Chemosphere 67, 1911-1918, 
and have been reproduced with permission from Elsevier. 
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Scenedesmus subspicatus, is particularly susceptible to the presence of TCS in surface waters, 

with a no observed effect concentration of 500 ng l-1 (Singer et al., 2002).   

 *Possible bacterial modes of action of TCS include the blockage of lipid synthesis. The 

trans-2-enoyl-ACP reductase in E. coli, known as FabI, regulates fatty acid synthesis and is 

inhibited by TCS (Sivaraman et al., 2004).  This has led to the concern that chronic exposure of 

natural bacterial populations in receiving streams might lead to development of strains cross-

resistant to antibiotics.  Strain-specific cross-resistance to chloramphenicol has been verified by 

TCS-adapted E. coli K-12, trimethoprim by E. coli O55, and chloramphenicol, tetracycline, 

amoxicillin, trimethorim, benzalkonium chloride, and chlorohexidine by E. coli O157:H7   

(Braoudaki and Hilton, 2004).    

 Plants share similar fatty acid synthesis pathways with bacteria, and Arabidopsis has been 

used to verify that enoyl ACP reductase is also a possible TCS target with inhibitory effects 

reported at dose concentrations between 0.1 and 20 ppm (Serano et al., 2006).  Plastids are the 

location for fatty acid synthesis in plants, and since plant plastids are thought to have originated 

from a photosynthetic symbiont, this shared pathway seems logical (Buchanan et al., 2000).  It 

has, in fact, been shown that plant enoyl ACP reductase can successfully replace the rate-limiting 

FAS II complex subunit in E. coli (Kater et al., 1994). 

 Plant fatty acid synthesis involves two main enzyme complexes named acetyl-CoA 

carboxylase (ACCase) and the fatty acid synthase complex (FAS II) (Serano et al., 2006).  ATP 

is required for the initial carboxylation step within fatty acid biosynthesis when acetyl-CoA 

forms malonyl-CoA, which then elongates the fatty acid by adding 2-carbon units to the acyl 

chain (Buchanan et al., 2000; Poghosyan et al., 2005).  The free acetate needed for fatty acid 

synthesis is generated outside the chloroplast.  Since acetyl-CoA is not able to cross membranes, 
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it is generally accepted that acetate is directly taken into the chloroplast by acetyl CoA 

synthetase for fatty acid production (Buchanan et al., 2000).  When the MOD1 gene, which 

encodes an enoyl ACP reductase in Arabidopsis, is substituted with the mod1 mutant, fatty acid 

biosynthesis and total lipid content is reduced, resulting in abnormal development and 

spontaneous cell death (Mou et al., 2000).  Using this information, Serrano et al. developed a 

study that confirmed the Arabidopsis MOD1 gene as being the probable target of TCS (Serrano 

et al., 2006). 

 Similar TCS effects among algal species found within municipal receiving streams could 

potentially have detrimental consequences for food quality and growth among those consumers 

that rely upon algae as their primary source of nutrition.  If consumer growth is limited due to 

poor nutrient concentrations among their prey, trophic cascade strength is greatly affected 

(Huxel, 1999).  Food chain models have indicated system dynamics at the producer level have 

the capability of being limited by the availability of nutrients (DeAngelis, 1992; Holt et al., 

1994).  As a result, the concentrations of aquatic system nutrients, such as lipids, and their 

availability to biota may serve to regulate population growth and reproduction of herbivores 

(Boersma and Claus-Peter, 2000), with the overall effect being a potential alteration of system 

stability.   

 While the importance of algal food quality to an aquatic system has been verified (Sterner 

and Schulz, 1998), further studies are needed to determine what combinations of factors have the 

greatest impact on algal food quality within these aquatic systems (Brett, 1993; Hessen, 1993; 

Urabe and Watanabe, 1993; Muller-Navarra, 1995; Gulati and DeMott, 1997; Brett et al., 2000).  

The objective of this study was to investigate algal lipid inhibition effects of toxic TCS 

concentrations.         
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Materials and Methods 

Sources of Chemicals for TCS Analyses 

Labeled internal standard (13C12-TCS and 13C12-M-TCS), TCS, and M-TCS were obtained 

from Wellington Laboratories (Guelph, ON, Canada).  Chu Cladophora growth media was from 

UTEX; University of Texas at Austin Culture Collection (Austin, TX).  All other reagents and 

solvents were from Fischer Scientific (Houston, TX, USA). 

 

Sources of Chemicals for [2-14C]acetate Radiolabeling 

 NEC-085D acetic acid, sodium salt, [2-14C] (54 mCi mmol-1) was ordered from NENTM 

Life Science Products, Inc., Boston, MA.  Chu algal culture media was ordered from UTEX; 

University of Texas at Austin Culture Collection (Austin, TX, USA), and DMSO was ordered 

from Fischer Scientific (Houston, TX, USA).   

 

Collection and Experimental Design 

 Cladophora spp. field samples were collected on 3/14/2007 from the Lewisville Lake 

Environmental Learning Area (LLELA), Lewisville, TX with GPS coordinates Lat 33.066722 

Lon 96.964166. The original site location was the Lewisville Aquatic Ecosystem Research 

Facility (LAERF) Potamogeton growth pond, which is filled daily with Lewisville Lake water.  

This location was selected since previous site analyses indicated non-detectable aqueous and 

algal concentration levels of TCS and M-TCS in samples collected below the Lewisville Lake 

dam (Coogan et al., 2007).  Random sections of each sample were removed and identified as 

Cladophora spp. by microscopic description at 10X magnification using G.W. Prescott’s 
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illustrated key (Prescott, 1964). Three 60 ml Nalgene bottles were used to hold Cladophora spp. 

replicate samples, which were kept on ice during transport. 

 

Algal Lipid Extraction and Analysis 

*Algal samples were field-collected prior to each analysis.  Samples were combined after 

hand-washing the contents of each Nalgene bottle in two liter containers of Milli Q 18 MΩ 

deionized water and removing visibly evident non-filamentous algal particles.  The fractionated 

sections were then transferred to another two liter container of Milli Q 18 MΩ deionized water, 

hand-agitated for further removal of non-visible particles (Stevenson and Bahls, 1999), and blot-

dried with paper towels.  Hereafter, blot-dried will be referred to as fresh weight and will apply 

to all algal concentration references (ie. ng/g fresh weight).  For the purpose of this paper, a 

reference to Cladophora spp. samples and the resultant bioaccumulation is actually a reference to 

a more complex algal compartment of which the greatest biomass contribution (determined 

visually to be at least 90%) is Cladophora spp.  

Stock solution of 1000 ppm [TCS] was prepared for exposures of algal field samples by 

dissolving 10 mg “neat” TCS into 10 ml dimethyl sulfoxide (DMSO).  A pilot project was 

conducted to determine lipid mass, GC response, and M-TCS detection by using 100 mg fresh 

weight algal samples.  Six algal samples, prepared as described above, were measured and 

separated into three [TCS] categories for separate dosing regimes (0 ppm, 1 ppm, and 10 ppm) to 

determine algal lipid bioaccumulation.  The 0 ppm samples were placed in test tubes containing 

2.0 ml Chu media and 20 µl DMSO as a control (Figure 13), 1 ppm samples in test tubes 

containing 2.0 ml Chu media and 2.0 µl TCS stock solution (Figure 14), and the 10 ppm samples 

in test tubes containing 2.0 ml Chu media and 20 µl TCS stock solution (Figure 15).   
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Fig. 13. Photograph of Cladophora spp. after 4 hour incubation period in 0 ppm [TCS]. 

 

 
Fig. 14. Photograph of Cladophora spp. after 4 hour incubation period in 1 ppm [TCS]. 
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Fig. 15.  Photograph of Cladophora spp. after 4 hour incubation period in 10 ppm [TCS]. 

 

Algal photographs and visual observations were made following incubation with use of a Zeiss 

Axio Imager.A1, Transmitted Light Microscope, 200X Magnification (Carl Zeiss, Germany).  

After vortexing, samples were allowed to incubate for three hours before further processing.  

Following incubation, algal samples were compressed against the inside of each test tube with a 

glass rod to remove excess solvent before being removed and placed in separate 5.0 ml Conical 

Screw Cap Microtubes (Quality Scientific Plastics).  A three ml solution of 1:1, 

hexane:ethylacetate was added to each microtube along with 10 µl of 5 ppm TCS and 10 µl of 5 

ppm M-TCS internal standards.  Approximately 10 – 15 glass beads measuring 2.5 mm in 

diameter were poured into each tube.  Tubes were then capped and placed in a  

MinibeadbeaterTM (Biospec Products) at high speed for three minutes.  Each homogenized 

product was poured into a Whatman Autovial 5 containing PTFE Filter Media with 

Polypropylene Housing and a 0.45 µm pore size, filtered into pre-weighed glass vials, and rinsed 
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with 100 µl solution of 1:1, hexane:ethylacetate.  Samples were evaporated to dryness by 

nitrogen gas, weighed to obtain lipid masses, re-suspended in dichloromethane to a final extract 

volume of 100 µl, and analyzed by gas chromatography-mass spectrometry (GC/MS) for TCS 

and M-TCS. 

Once results were confirmed from the pilot project, fifteen samples containing 

approximately 10.0 mg (fresh weight) algae, prepared from field samples as described in the 

Algal Lipid Extraction and Analysis section in chapter 2 (1st paragraph), were measured and 

separated into three [TCS] categories for separate dosing regimes (0 ppm, 1 ppm, and 10 ppm) to 

determine algal lipid bioaccumulation.  Three additional samples were also processed for Quality 

Control analyses.  The 0 ppm samples were placed in test tubes containing 2.0 ml Chu media and 

20 µl DMSO as a control, 1 ppm samples in test tubes containing 2.0 ml Chu media and 

2.0 µl TCS stock solution, and the 10 ppm samples in test tubes containing 2.0 ml Chu 

2.0 µl TCS stock solution, and the 10 ppm samples in test tubes containing 2.0 ml Chu media 

and 20 µl TCS stock solution.  After vortexing, samples were allowed to incubate for three hours 

before further processing.  Following incubation, algal samples were compressed against the 

inside of each test tube with a glass rod to remove excess solvent before being removed and 

placed in separate 2.0 ml Conical Screw Cap Microtubes (Quality Scientific Plastics).  A one ml 

solution of 1:1, hexane:ethylacetate was added to each microtube along with 100 µl of 5 ppm 

TCS as an internal standard.  Additionally, 100 µl of 5 ppm native TCS was added to the blank 

spike, matrix spike, and matrix spike duplicate.  Approximately 10 – 15 glass beads measuring 

2.5 mm in diameter were poured into each tube.  Tubes were then capped and placed in a  

MinibeadbeaterTM (Biospec Products) at high speed for three minutes.  Each homogenized 

product was poured into a Whatman Autovial 5 containing PTFE Filter Media with 
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Polypropylene Housing and a 0.45 µm pore size, filtered into pre-weighed glass vials, and rinsed 

with 100 µl solution of 1:1, hexane:ethylacetate.  Samples were evaporated to dryness by 

nitrogen gas, weighed to obtain lipid masses, re-suspended in dichloromethane to a final extract 

volume of l ml, and analyzed by gas chromatography-mass spectrometry (GC/MS) for TCS.   

 

Instrumental Analyses 

 *TCS and M-TCS analyses were conducted on an Agilent (Palo Alto, CA, USA) 6890 

GC coupled with a 5973 mass selective detector MS (70-eV).  An eight point standard curve was 

established with analyte concentrations from 5-1,000 pg µl-1 and internal standard concentrations 

at 500 pg µl-1.  The MS was operated in the single ion monitoring mode (SIM) with target and 3 

confirmatory masses monitored (50 msec dwell time) for each compound.  GC conditions were 

helium carrier gas at 480 hPa,  inlet temperature at 260 °C (2µl, pulsed pressure at 1,700 hPa for 

0.5 min, splitless injection), and column (Alltech, Deerfield, IL, USA; EC-5 30 m, 0.25 mm i.d., 

0.25 µm film) temperature initially at 40 °C with a 1-min hold followed by a 50 °C min-1 ramp to 

140 °C with a 5- min hold followed by a 10 °C min-1 ramp to 300 °C with a final 17-min bake-

out.  Transfer line temperature was 265 °C. 

Practical quantitation limits (PQL, Table 7) were established at approximately 10X the 

instrument detection limit, which was estimated as 3X S.D. of background noise levels for 

quantitation ions.  Standard curves included PQL concentrations for each analyte. 

 

[2-14C]Acetate Radiolabeling Procedure 

 To examine whether TCS could effectively reduce the rate of lipid synthesis from acetate 

in Cladophora spp., we followed a [2-14C]acetate radiolabeling protocol modified from a tobacco 
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cell suspension study conducted by Hoang and Chapman (Hoang and Chapman, 2002).  Since 

acetate is readily integrated into plant lipids, [2-14C]acetate is used regularly as a radioactive 

tracer for in vitro experimentation investigating lipid biosynthesis (Qi et al., 1995; Roughan and 

Ohlrogge, 1996).  Three sets of ten 100 mg algal samples were measured and placed in 125 X 16 

mm test tubes with prepared solutions of 2.0 ml Chu algal culture media containing three 

concentrations of a TCS stock solution (0 ppm, 1 ppm, and 10 ppm) prepared with DMSO as the 

solvent.  Following a thirty minute incubation period, 0.5 µCi of radiolabeled [2-14C]acetate 

(54mCi mmol-1) was pipetted into each sample, vortexed at low speed, and allowed to incubate 

for three hours at 24 °C with equal light intensity distribution on the surface of each tube 

adjusted to 2.9 µEinsteins using fluorescent lamps.  Radioactive waste was pipetted from each 

sample tube and collected for quality control analysis.  After adding 2 ml 70 °C isopropyl 

alcohol to each tube, foil caps were applied, then tubes were vortexed and maintained at 70 °C 

for thirty minutes.  One ml chloroform was added to each tube, and after being vortexed, samples 

were kept covered at 4 °C overnight.    After transferring the fluid to new tubes, 1 ml chloroform 

was added to each sample extract.  Two ml of a 1 M KCl solution were then added to each 

extract and vortexed.  Samples were then centrifuged at 1300 rpm for 5 minutes.  The top 

aqueous layer was removed by aspiration, after which 2 ml of the 1M KCl was again added.  

Samples were centrifuged and aspirated two more times following the same procedure.  

Following the final aspiration, the organic layer was transferred to 6.5 ml polyethylene 

scintillation vials and evaporated to dryness with nitrogen gas.  Once dried, 200µl ethanol and 

100 µl bleach were added to each vial and left for at least 30 minutes to remove chlorophyll 

quenching effects from the scintillation counting.  After bleaching, 5 ml scintillation fluid were 

added to each vial, vortexed, and placed in glass carriers for scintillation counting. 
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 Our initial protocol did not include chlorophyll bleaching.  Six samples were divided into 

sets of two, prepared by using the same TCS concentrations (0 ppm, 1 ppm, and 10 ppm), and 

following the same protocol, with three exceptions: bleaching was not applied, 200 mg algal 

samples were used, and scintillation analysis followed a two-hour incubation period. 

 To assess algal viability after incubation in 10 ppm TCS, plasma membrane integrity was 

investigated after a 24 hour incubation period by using Evans blue stain and protocol modified 

from a root cell viability study conducted by Yoko Yamamoto (Yamamoto et al., 2001).  Three 

200 mg Cladophora  samples were cleaned and blot-dried.  One sample was left on a piece of 

filter paper for 48 hours in a dark drawer, the second sample was exposed to 2.0 ml Chu media 

vortexed with 20 µl DMSO for 24 hours, and the third sample was exposed to 2.0 ml Chu media 

vortexed with 20 µl TCS stock solution for 24 hours.  Following the allotted time periods, each 

sample was submerged in 2 ml of an Evans blue solution (0.025% [w/v] Evans blue in 100 µM 

CaCl2, pH 5.8, temperature 21.8 °C) for 10 min.  Algae were washed three times with 20 ml of 

100 µM CaCl2, pH 5.8 (Thermo Orion Model 720A pH meter, Cole-Parmer Instrument 

Company, Vernon Hills, IL), after which no further dye elution occurred from the algal samples.  

The algae stained with Evans blue were then observed under a light microscope (Zeiss Axio 

Imager.A1 Transmitted Light, Carl Zeiss, Germany) to compare cell viability. 

 

[2-14C]Acetate Analysis 

 Scintillation counting was performed by using the Beckman LS 600 IC.  The units of 

measurement were counts per minute (cpm), with the correction factor being cpm/0.9 = decays 

per minute (dpm). 
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Statistical Analyses 

Standard statistical analyses were performed using Microsoft Excel resulting in mean and 

standard error values for [TCS] in ppm and [2-14C]acetate in pmol acetate g-1     fresh weight 

algae.  Data were also analyzed by T-Test for statistical significance.  The level of significance 

for all analyses was α = 0.05. 

 

Results 

Analytical Quality Control (QC) Results 

      Recovery percentage for algal blank spike addition was recorded as being 109%.  Matrix 

spike and matrix spike duplicate recovery percentage were recorded at 116% and 109%, 

respectively, with a mean of 112% (Figure 16).   Percent deviation for algal analysis of matrix 

spike duplicate was recorded as being 6.2%.  No blank values exceeded the PQLs (Table 7). 
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Fig. 16.  GC/MS quality control percent recoveries for triclosan in algae following spike 

additions. 
 
Table 7.  Quality control data for triclosan in algae. Spike additions were at 5.0 µg g-1 for algae. 

Blank (ppm) Blk Spk Rec (%) Mat Spk Rec (%) Mat Skp Dup Rec (%) Dup Dev 
(%) PQL (ppm) 

    < 1.0 109 116 109 6.2 1.0 
(Blk = Blank, Spk = Spike, Rec = Recovery, Mat = Matrix, Dup = Duplicate, Dev = Deviation, PQL = Practical 
Quantitation Limits) 
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Algal Lipid Bioaccumulation Results 

TCS algal concentrations for each of five 10 mg samples exposed to three 

different dosing regimes are recorded in Table 8.  For 0 ppm, algal concentration values for all 

five samples remained below the detection limits of 0.5 ppm.  The 1 ppm algal concentration 

values ranged from 130 ppm to 226 ppm, with a mean value of 173 ppm.  The 10 ppm algal 

concentration values ranged from 1210 ppm to 1793 ppm, with a mean value of 1398 ppm.  

Bioaccumulation for 1 ppm and 10 ppm aqueous concentrations of triclosan following a three 

hour incubation period resulted in algal lipid BAFs of 170 and 140, respectively (Table 9). 

Table 8.  Algal concentrations in 100 mg replicate samples (ppm) and calculated means for each 
aqueous TCS concentration (0 ppm, 1 ppm, 10 ppm) after a 3-hour incubation period.  (N.D. is < 

PQL of 1.0 ppm). 

Aqueous 
[TCS] 

Algal [TCS] 
A (ng/mg) 

Algal [TCS] 
B (ng/mg) 

Algal [TCS] 
C (ng/mg) 

Algal [TCS] 
D (ng/mg) 

Algal [TCS] 
E (ng/mg) 

Algal [TCS] 
Mean (ng/mg) 

0 ppm N.D. N.D. N.D. N.D. N.D. N.D. 

1 ppm 226 176 170 130 161 173 

 10 ppm 1793 1416 1210 1142 1431 1398 

 

Table 9.  Algal bioaccumulation factors (BAFs) based on triclosan aqueous concentrations and 
algal concentrations (ppm) following 3-hour incubation period. 

Aqueous [TCS] Algal [TCS] Means BAFs 

0 ppm < 1.0 ppm NA 

1 ppm 173 ppm 170 

10 ppm 1398 ppm 140 

 

 

[2-14C]Acetate Labeling Results 

The second part of this investigation to examine whether TCS may be involved in  

algal lipid biosynthesis following a three hour incubation using TCS concentrations of  
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0 ppm, 1 ppm, and 10 ppm involved the use of [2-14C]acetate labeling.  Algae treated with 1 ppm 

[TCS] produced a 32% reduction in lipid synthesis, while the 10 ppm [TCS] treatment resulted in 

an 89% reduction in lipid synthesis.  Data for the [2-14C]acetate labeling protocol, reported in 

pmol acetate incorporated into lipid per gram fresh weight algae, produced means of 671, 453, 

and 74.8 after a three-hour exposure period in 0 ppm, 1 ppm, and 10 ppm [TCS], respectively.  

Bleaching effects increased scintillation results 96% to 99% following application of 200 µl 

ethanol and 100 µl bleach (Table 10).   

Table 10.  [2-14C]acetate labeling scintillation results according to aqueous TCS concentrations 
and algal accumulation following 3 hour (bleached) and 2 hour (non-bleached) incubation. 

Aqueous 
[TCS] 

Mean CPM 
(Bleached) 

% Algal Lipid 
Inhibition 

Mean CPM 
 (Non-bleached) 

% CPM 
Improvement 

0 ppm 14476 0 202 99 

1 ppm 9774 32 397 96 

10 ppm 1614 89 48 97 

  (CPM = counts per minute) 
  

 Visual confirmation of algal plasma membrane integrity by using Evans blue stain 

resulted in the observation of nuclear uptake among dead algal cells from samples left in the dark 

for 48 hours.  Samples exposed to 10 ppm TCS over a 24 hour incubation period and samples 

exposed to 0 ppm TCS over a 24 hour incubation period both expressed membrane integrity with 

no visual confirmation of Evans blue uptake.  

 An unexpected qualitative result was noticed during the microscopic observations of 

algal samples following the 4-hour incubation period in each aqueous TCS concentration (0 ppm, 

1 ppm, and 10 ppm).  The algae maintained in the 10 ppm aqueous TCS concentration 

experienced a “chlorophyll clumping” phenomenon not observed among algal samples incubated 

in the 0 ppm and 1 ppm aqueous TCS concentrations (see Figure 15).    
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Discussion 

 The results of our study support the assumption that high aqueous TCS concentrations are 

toxic to lipid biosynthesis among Cladophora spp. samples and reduce the acetate incorporation 

into total lipids.  Although the indication of inhibition at the 1 ppm aqueous TCS concentration 

(453 pmol acetate g-1 fresh weight algae) was not statistically significant, the 3 hour algal 

incubation results at the 10 ppm aqueous TCS concentration (74.8 pmol acetate g-1 fresh weight 

algae) did indicate statistical significance following [2-14C]acetate labeling (Figure 17).  Overall, 

a 32% lipid biosynthesis reduction was observed at 1 ppm aqueous TCS concentration and 89% 

reduction at 10 ppm aqueous TCS concentration after a three hour incubation period.  Algal TCS 

concentration results were statistically significant and were recorded as being 173 ppm for 1 ppm 

aqueous TCS concentrations and 1398 ppm for 10 ppm aqueous TCS concentrations (Figure 18).  

Although these algal TCS concentration values are orders of magnitude higher than 

environmentally relevant concentrations (approximately 100 ppb) within receiving streams of 

area wastewater treatment plants (Coogan et al., 2007), the results suggest the possibility that 

algal lipid inhibitory effects may be expressed in situ over longer exposure times at 

environmentally relevant concentrations.  It has been speculated that lower algal TCS 

concentrations at the outfall of wastewater treatment plants in the presence of increased aqueous 

concentrations may be a result of algal lipid inhibition nearest the point source of municipal 

WWTP effluent (Coogan et al., 2007).  The results of this study appear to support the potential of 

TCS inhibitory effects on algal lipid synthesis among organisms found in receiving streams of 

WWTPs.  After three hours of exposure, the algal bioaccumulation factor (BAF) was reduced 

from 170 at aqueous TCS concentrations of 1 ppm to 140 at aqueous TCS concentrations of 10 

ppm (Figure 19). 
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Fig. 17  [2-14C]acetate labeling results in pmol acetate g-1 fresh weight algae with means and 

standard errors (α = 0.05, n = 10) indicating algal lipid production following a three hour 
incubation period at aqueous TCS concentrations of 0 ppm, 1 ppm, and 10 ppm.  Means for a 
given TCS concentration with different letters (a, b) are significantly different from the 0 ppm 

aqueous [TCS]. 
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Fig. 18.  Algal TCS concentration results with means and standard errors (α = 0.05, n = 5) 

following a three hour incubation period at aqueous TCS concentrations of 0 ppm, 1 ppm, and 10 
ppm.  Means for a given TCS concentration with different letters (a, b) are significantly different 

from the 0 ppm aqueous [TCS]. 
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Fig. 19.  Algal TCS bioaccumulation factors (BAFs) at aqueous TCS concentrations of 0 ppm, 1 

ppm, and 10 ppm. 
 

 In spite of a 10 ppm increase in aqueous TCS concentration, the 89% algal lipid 

inhibition may have affected the ability of the algal cells to bioaccumulate TCS.  Other possible 

explanations for the reduction in algal BAF at the 10 ppm aqueous TCS concentration might be a 

response to TCS uptake kinetics by Cladophora spp. or growth dilution (Gorski et al., 2006), 

both of which were not investigated in this study.  In order to better understand TCS uptake in 

Cladophora, further studies would need to include investigations into such factors as time-

dependent incorporation of [2-14C]acetate into Cladophora total lipids (Hoang and Chapman, 

2002) and binding site concentrations per cell, which would directly relate to cell wall properties 

that vary among algal species (Graham and Wilcox, 2000).  Uptake rates for certain algae, such 

as S. capricornutum and Cosmarium botrytis, are known to be higher than cyanobacteria or 

diatoms (Miles et al., 2001), so the use of pure Cladophora cultures would be important for these 

types of investigations.     
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“Chlorophyll Clumping” at 10 ppm Aqueous TCS Concentrations 

The “chlorophyll clumping” phenomenon observed among the algal samples during the 

4-hour incubation period in the 10 ppm aqueous TCS concentration may have been a cellular 

response to senescence.  A symptom of plant senescence, or chlorophyll catabolism, involves the 

production of substances catalyzed by the enzyme chlorophyllase, which is necessary for the 

conversion of chlorophyll to chlorophyllide.    

 In spite of a 10 ppm increase in aqueous TCS concentration, the 89% algal lipid 

inhibition may have affected the ability of the algal cells to bioaccumulate TCS.  Other possible 

explanations for the reduction in algal BAF at the 10 ppm aqueous TCS concentration might be a 

response to TCS uptake kinetics by Cladophora spp. or growth dilution (Gorski et al., 2006), 

both of which were not investigated in this study.  In order to better understand TCS uptake in 

Cladophora, further studies would need to include investigations into such factors as time-

dependent incorporation of [2-14C]acetate into Cladophora total lipids (Hoang and Chapman, 

2002) and binding site concentrations per cell, which would directly relate to cell wall properties 

that vary among algal species (Graham and Wilcox, 2000).  Uptake rates for certain algae, such 

as S. capricornutum and Cosmarium botrytis, are known to be higher than cyanobacteria or 

diatoms (Miles et al., 2001), so the use of pure Cladophora cultures would be important for these 

types of investigations.     

 

“Chlorophyll Clumping” at 10 ppm Aqueous TCS Concentrations 

The “chlorophyll clumping” phenomenon observed among the algal samples during the 

4-hour incubation period in the 10 ppm aqueous TCS concentration may have been a cellular 

response to senescence.  A symptom of plant senescence, or chlorophyll catabolism, involves the 
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production of substances catalyzed by the enzyme chlorophyllase, which is necessary for the 

conversion of chlorophyll to chlorophyllide.  One of these products is phytol.  During the onset 

of senescence, phytol accumulates in lipid droplets known as plastoglobuli and may result in the 

appearance of “chlorophyll clumping.”  Further information indicates these changes can be 

differentiated from deterioration, which characterizes senescence as a programmed cellular 

response as opposed to a form of necrosis (Buchanan et al., 2000).  How or if this response 

affects TCS bioaccumulation remains to be investigated. 

 
Trophic Responses to TCS and Other Factors in WWTP Receiving Streams 

 
Determining the bioavailability of TCS to algal species in receiving streams of municipal 

WWTPs may be important in understanding the movement of relatively high log Kow 

compounds into higher trophic levels within aquatic systems (Gorski et al., 2006).  As human 

population numbers continue to increase and the prospect of water reuse becomes more of a 

reality, especially among arid climates within areas of the southwestern US, the potential exists 

for higher concentrations of PPCPs, such as TCS, to be found in natural water systems (Crook 

and Surampalli, 1996; Waltman et al., 2006).  Could the environmentally relevant aqueous TCS 

concentration of 0.1 ppb ever reach the experimental concentrations of 1 ppm and 10 ppm used 

in this investigation?  Probably not, but we are already finding TCS concentrations in human 

urine (127 ng ml-1) have the capability of matching concentrations found in effluent systems (Ye 

et al., 2005).  Bioaccumulation factors within biota of receiving streams at the base of the aquatic 

food web are already expressing TCS concentrations three orders of magnitude higher than 

aqueous concentrations (Coogan et al., 2007).  Critical body burden analyses among the variety 

of organisms that live, reproduce, and grow within these systems will be required before a clear 

understanding of possible consequences can be established. 
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 Even though fatality may not be a direct response to high concentrations of many aquatic 

pollutants, such as TCS, fecundity and longevity of many aquatic species have the potential to be 

negatively affected (Hutson, 1978).  Biotic reproduction and growth rely heavily on the ability of 

organisms to obtain adequate supplies of fatty acids, which suggests the fundamental role these 

nutrients play in aquatic food webs (Arts and Wainman, 1999).  Certain algal grazers have 

demonstrated deficiencies in specific long-chained poly-unsaturated fatty acids (PUFAs), since 

these consumers do not adequately synthesize PUFAs and must depend upon nutrient inputs 

through consumption (Hessen and Leu, 2006).  Studies within Arctic ecosystems, which are 

characteristically rich in lipids, have substantiated the important role fatty acids play in 

membrane production, energy storage and use, and multiple other physiological responses (Arts 

and Wainman, 1999; Hessen and Leu, 2006).  Hessen’s studies investigated the ultraviolet 

radiation (UV-R) effect on phytoplankton nutrient quality in reference to fatty acid production; 

short-wave UV-R has been shown to play a vital role in affecting fatty acid profiles among 

autotrophs in response to biosynthesis effects or oxidation (Wang and Chai, 1994; Arts and Rai, 

1997; Hessen et al., 1997).  Another study investigated UV-exposure effects on PUFAs within 

freshwater Chlorophyceans and found small but notable impacts (Leu et al., 2007). 

 Individually, lipid inhibition by any one environmentally relevant factor may not be 

adequate to manifest negative system effects.  Multiple stressor effects, however, may 

adequately result in synergistically-produced trophic degradation within receiving streams of 

wastewater treatment plants.  Ozone depletion, global warming, and increased population growth 

within municipalities may, under optimal circumstances, multiply algal lipid inhibition effects 

and dramatically reduce food quality needs for healthy zooplankton growth and reproduction, 

and possibly the overall ecosystem dynamics. 
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CHAPTER 5 

DISCUSSION AND PROJECTIONS 

 This study investigated the use of freshwater algal and snail species to study the 

bioaccumulation potential of TCC, TCS, and M-TCS in surface waters of the Denton WWTP 

receiving stream.  Additional research investigated algal lipid inhibition effects in response to 

toxic TCS aqueous concentrations.  Results indicated a consistent reduction between water 

concentrations of TCS, TCC, and M-TCS from the DWWTP outfall to downstream sites.  With 

elevated algal concentrations of the same antimicrobials remaining relatively similar among all 

sites, observed bioaccumulation results indicated BAFs approximately three orders of magnitude.  

Snail bioaccumulation results produced a similar pattern following a two-week exposure period 

at the outfall and produced BAFs of two to three orders of magnitude.  Additionally, laboratory 

investigations indicated high aqueous TCS concentrations of 10 ppm resulted in approximately 

90% algal lipid inhibition in response to TCS effects on enoyl ACP reductase.    

Globally, communities continue to face increasing water demands.  Water supply 

challenges are in direct response to factors such as population growth, contamination and 

depletion of groundwater, and drought conditions, especially within arid and semi-arid regions.  

Suggested solutions to these issues include water reuse and recycling, which in and of 

themselves provide additional challenges.  Current reuse levels are small in comparison to the 

total production volume of industrial and municipal effluent (Miller, 2006).  Methods of 

providing high-quality supplies of water (other than solely for the purpose of irrigating golf 

courses or industrial applications) in ways that will be beneficial for both the general public and 

the environment need to be further investigated.  If general-purpose reuse is to become a reality, 

further research will need to be conducted to assure populations that their reclaimed water is safe 
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both chemically and biologically (Miller, 2006).  Developing safe and sustainable water 

resources for our century will also require a better understanding of long-term impacts caused by 

environmentally relevant concentrations of emerging anthropogenic contaminants, such as TCS, 

M-TCS, and TCC, which are consistently introduced to the environment as a result of consumer 

activity. 

 As analytical chemical analyses continue to experience successes in measuring trace 

chemicals at continually lowered levels, our ability to assess meaningful environmental impacts 

may improve.  Major and uncontrolled non-point pollution as a result of consumer activity has 

become a long-term source of environmental contamination (Daughton, 2004).  Dealing with 

these impacts will require both traditional and novel approaches as water reuse becomes more of 

a reality.  One of these approaches is found in the use of constructed treatment wetlands, which 

have the capability of transforming numerous common pollutants released from municipal 

wastewater treatment plants into biologically productive byproducts (Kadlec and Knight, 1996).  

Wetlands, and their associated wetland plants, have unique capabilities due to the high rate of 

biological activity found within these ecosystems and their ability to adapt to a variety of 

hydrological conditions.  Additionally, wetlands provide a natural method of water treatment and 

require minimal energy input, in the form of fossil fuels, and no chemical treatments (Kadlec and 

Knight, 1996).  Unfortunately, natural wetlands currently comprise less than 50 percent of their 

historical area in the continental United States.  Globally, greater environmental awareness, 

especially within arid regions facing the potential for water shortages, high effluent 

concentrations, and extensive reuse, has begun to highlight the benefits of wetlands and resulted 

in increasing levels of restoration (Kadlec and Knight, 1996).  Although analytical improvements 

in environmental analyses (lower detection limits, higher levels of reproducibility and accuracy) 
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present the possibility of enhanced plant monitoring methods for emerging contaminants within 

constructed treatment wetlands, difficulties still arise in the area of representative sampling 

(Markert, 1996).  Additional research in sampling processes may result in higher levels of 

accuracy and reliability in plant analyses and provide greater credibility to the use of constructed 

treatment wetlands for water processing.       

While the potential for evaluating the environmental risk associated with emerging 

contaminants continues to increase, the importance in communicating this risk to the general 

public also needs to be addressed.  Daughton indicates the importance of effective risk 

communication in reference to two factors:  newly-introduced emerging aquatic contaminants 

will continue to increase and water reuse pressures will expand as freshwater supplies decrease 

(Daughton, 2004).  In light of these two factors, applicable research methods, such as those 

presented in our bioaccumulation/lipid biosynthesis study, need to be developed.  Since safety 

factors based on observed water concentrations do not appear to present an immediate threat, 

long-term and synergistic affects need further investigation.  The ultimate challenge, however, 

will be to communicate the significance of environmental exposure in a manner that results in 

both public action and ecological integrity.       
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