Ecotoxicological Investigations in Effluent-Dominated Stream Mesocosms

Description:

The University of North Texas Stream Research Facility (UNTSRF) was designed to examine contaminant impacts on effluent-dominated stream ecosystems. Stream mesocosms, fed municipal effluent from the City of Denton, TX, Pecan Creek Water Reclamation Plant (PCWRP), were treated with 0, 15 or 140 µg/L cadmium for a 10-day study in August 2000. Laboratory toxicity test and stream macroinvertebrate responses indicated that cadmium bioavailability was reduced by constituents of effluent-dominated streams. The Biotic Ligand Model (BLM) for Cd was used to predict a 48 hour Cd EC50 for Ceriodaphnia dubia of 280 µg/L in these effluent-dominated streams. This value is higher that an EC50 of 38.3 µg/L Cd and a 7-day reproduction effect level of 3.3 µg/L Cd generated for C. dubia in reconstituted laboratory hard water. These results support use of a cadmium BLM for establishing site-specific acute water quality criteria in effluent-dominated streams. Although not affected by 15 µg/L treatments, organisms accumulated Cd in 15 µg/L treated streams. Hence, over longer exposure periods, Cd accumulation may increase and a no effect level may be lower than the observed 10-day no effect level of 15 µg/L.
A toxicity identification evaluation procedure was utilized with in vitro and in vivo bioassays to identify estrogenic compounds in PCWRP effluent, previously identified to seasonally induce vitellogenin (VTG) in male fathead minnows. Steroids, nonylphenol ethoxylate metabolites, and other unidentified compounds were identified as causative effluent estrogens. These findings suggest that in vivo VTG bioassays should be used to confirm in vitro Yeast Estrogen Screening assay activity when effluents are fractionated or screened for estrogenicity. A subsequent 90-day cadmium study was initiated to assess long-term effluent and cadmium effects on fish endocrine function. Juvenile fathead minnows were placed in UNTSRF pool sections of replicate streams treated with 0, 5, 20 or 80 µg/L Cd. Male VTG was induced at each treatment level, indicating that PCWRP effluent was estrogenic during fall 2001. 20 and 80 µg/L Cd treatments reduced male circulating estradiol levels and critical swimming performance. Future studies are needed to assess impacts of environmental estrogen exposure on fish calcium metabolism and vertebral integrity.

Creator(s): Brooks, Bryan W.
Creation Date: December 2002
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 614
Past 30 days: 4
Yesterday: 0
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Place of Publication: Denton, Texas
Date(s):
  • Creation: December 2002
  • Digitized: July 18, 2007
Description:

The University of North Texas Stream Research Facility (UNTSRF) was designed to examine contaminant impacts on effluent-dominated stream ecosystems. Stream mesocosms, fed municipal effluent from the City of Denton, TX, Pecan Creek Water Reclamation Plant (PCWRP), were treated with 0, 15 or 140 µg/L cadmium for a 10-day study in August 2000. Laboratory toxicity test and stream macroinvertebrate responses indicated that cadmium bioavailability was reduced by constituents of effluent-dominated streams. The Biotic Ligand Model (BLM) for Cd was used to predict a 48 hour Cd EC50 for Ceriodaphnia dubia of 280 µg/L in these effluent-dominated streams. This value is higher that an EC50 of 38.3 µg/L Cd and a 7-day reproduction effect level of 3.3 µg/L Cd generated for C. dubia in reconstituted laboratory hard water. These results support use of a cadmium BLM for establishing site-specific acute water quality criteria in effluent-dominated streams. Although not affected by 15 µg/L treatments, organisms accumulated Cd in 15 µg/L treated streams. Hence, over longer exposure periods, Cd accumulation may increase and a no effect level may be lower than the observed 10-day no effect level of 15 µg/L.
A toxicity identification evaluation procedure was utilized with in vitro and in vivo bioassays to identify estrogenic compounds in PCWRP effluent, previously identified to seasonally induce vitellogenin (VTG) in male fathead minnows. Steroids, nonylphenol ethoxylate metabolites, and other unidentified compounds were identified as causative effluent estrogens. These findings suggest that in vivo VTG bioassays should be used to confirm in vitro Yeast Estrogen Screening assay activity when effluents are fractionated or screened for estrogenicity. A subsequent 90-day cadmium study was initiated to assess long-term effluent and cadmium effects on fish endocrine function. Juvenile fathead minnows were placed in UNTSRF pool sections of replicate streams treated with 0, 5, 20 or 80 µg/L Cd. Male VTG was induced at each treatment level, indicating that PCWRP effluent was estrogenic during fall 2001. 20 and 80 µg/L Cd treatments reduced male circulating estradiol levels and critical swimming performance. Future studies are needed to assess impacts of environmental estrogen exposure on fish calcium metabolism and vertebral integrity.

Degree:
Level: Doctoral
Language(s):
Subject(s):
Keyword(s): Effluent | cadmium | effluent-dominated stream | mesocosm | estrogen | toxicity identification evaluation
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • OCLC: 52098879 |
  • UNTCAT: b2497453 |
  • ARK: ark:/67531/metadc3359
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Public
License: Copyright
Holder: Brooks, Bryan W.
Statement: Copyright is held by the author, unless otherwise noted. All rights reserved.