The Study of Low Temperature Silene Generation

PDF Version Also Available for Download.

Description

The reactions of tert-butyl-, sec-butyl-, and n-butyllithium with dimethylfluorovinylsilane include addition to the double bond to give both silene and silenoid intermediates, fluorine substitution, and a novel vinyl substitution. For the tert-butyllithium reaction, product stereochemistry and trapping experiments using both cyclopentadiene and methoxytrimethylsilane show that silenes are not formed in THF. In hexane about 67% of the 1,3-disilacyclobutanes obtained arise from silene dimerization while 33% are formed by silenoid coupling. In hexane the order of reactivity for addition, t-Bu > sec-Bu > n-Bu, is opposite that for fluorine substitution. The vinyl substitution is most significant with secondary alkyllithium reagents including … continued below

Physical Description

v, 100 leaves : ill.

Creation Information

Cheng, Albert Home-Been August 1985.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 23 times. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Cheng, Albert Home-Been

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

The reactions of tert-butyl-, sec-butyl-, and n-butyllithium with dimethylfluorovinylsilane include addition to the double bond to give both silene and silenoid intermediates, fluorine substitution, and a novel vinyl substitution. For the tert-butyllithium reaction, product stereochemistry and trapping experiments using both cyclopentadiene and methoxytrimethylsilane show that silenes are not formed in THF. In hexane about 67% of the 1,3-disilacyclobutanes obtained arise from silene dimerization while 33% are formed by silenoid coupling. In hexane the order of reactivity for addition, t-Bu > sec-Bu > n-Bu, is opposite that for fluorine substitution. The vinyl substitution is most significant with secondary alkyllithium reagents including the tert-butyllithium adduct to dimethylfluorovinylsilane and with sec-butyllithium itself. Evidence for the formation of vinyllithium or ethylene in the process could not be obtained.

Physical Description

v, 100 leaves : ill.

Subjects

Keywords

Library of Congress Subject Headings

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 1985

Added to The UNT Digital Library

  • Aug. 22, 2014, 6 p.m.

Description Last Updated

  • May 17, 2018, 8:47 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 23

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Cheng, Albert Home-Been. The Study of Low Temperature Silene Generation, dissertation, August 1985; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc331711/: accessed April 18, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen