Palmitoyl-acyl carrier protein thioesterase in cotton (Gossypium hirsutum L.): biochemical and molecular characterization of a major mechanism for the regulation of palmitic acid content.

Description:

The relatively high level of palmitic acid (22 mol%) in cottonseeds may be due in part to the activity of a palmitoyl-acyl carrier protein (ACP) thioesterase (PATE). In embryo extracts, PATE activity was highest at the maximum rate of reserve accumulation (oil and protein). The cotton FatB mRNA transcript abundance also peaked during this developmental stage, paralleling the profiles of PATE enzyme activity and seed oil accumulation. A cotton FatB cDNA clone was isolated by screening a cDNA library with a heterologous Arabidopsis FatB probe (Pirtle et al., 1999, Plant and Cell
Physiology 40: 155-163). The predicted amino acid sequence of the cotton PATE preprotein had 63% identity to the Arabidopsis FatB thioesterase sequence, suggesting that the cotton cDNA clone probably encoded a FatB-type thioesterase. When acyl-CoA synthetase-minus E. coli mutants expressed the cotton cDNA, an increase in 16:0 free fatty acid content was measured in the culture medium. In addition, acyl-ACP thioesterase activity assays in E. coli lysates revealed that there was a preference for palmitoyl-ACP over oleoyl-ACP in vitro, indicating that the cotton putative FatB cDNA encoded a functional thioesterase with a preference for saturated acyl-ACPs over unsaturated acyl-ACPs (FatA). Overexpression of the FatB cDNA in transgenic cotton resulted in elevated levels of palmitic acid in transgenic somatic embryos compared to control embryos. Expression of the anti-sense FatB cDNA in transgenic cotton plants produced some plants with a dwarf phenotype. These plants had significantly smaller mature leaves, all with smaller cells, suggesting that these plants may have less palmitic acid available for incorporation into extraplastidial membrane lipids during cell expansion. Thus manipulation of FatB expression in cotton directly influenced palmitic acid levels. Collectively, data presented in this dissertation support the hypothesis that there indeed is a palmitoyl-ACP thioesterase in cotton, encoded by the isolated FatB cDNA, which plays a major role in regulating palmitic acid content of extraplastidial complex glycerolipids. This work forms the basis for future studies of the influence of palmitic acid content on plant membrane function and provides a key target for the metabolic engineering of palmitic acid levels in storage oils of developing cottonseeds.

Creator(s): Huynh, Tu T
Creation Date: August 2001
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 476
Past 30 days: 60
Yesterday: 0
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Place of Publication: Denton, Texas
Date(s):
  • Creation: August 2001
  • Digitized: July 3, 2007
Description:

The relatively high level of palmitic acid (22 mol%) in cottonseeds may be due in part to the activity of a palmitoyl-acyl carrier protein (ACP) thioesterase (PATE). In embryo extracts, PATE activity was highest at the maximum rate of reserve accumulation (oil and protein). The cotton FatB mRNA transcript abundance also peaked during this developmental stage, paralleling the profiles of PATE enzyme activity and seed oil accumulation. A cotton FatB cDNA clone was isolated by screening a cDNA library with a heterologous Arabidopsis FatB probe (Pirtle et al., 1999, Plant and Cell
Physiology 40: 155-163). The predicted amino acid sequence of the cotton PATE preprotein had 63% identity to the Arabidopsis FatB thioesterase sequence, suggesting that the cotton cDNA clone probably encoded a FatB-type thioesterase. When acyl-CoA synthetase-minus E. coli mutants expressed the cotton cDNA, an increase in 16:0 free fatty acid content was measured in the culture medium. In addition, acyl-ACP thioesterase activity assays in E. coli lysates revealed that there was a preference for palmitoyl-ACP over oleoyl-ACP in vitro, indicating that the cotton putative FatB cDNA encoded a functional thioesterase with a preference for saturated acyl-ACPs over unsaturated acyl-ACPs (FatA). Overexpression of the FatB cDNA in transgenic cotton resulted in elevated levels of palmitic acid in transgenic somatic embryos compared to control embryos. Expression of the anti-sense FatB cDNA in transgenic cotton plants produced some plants with a dwarf phenotype. These plants had significantly smaller mature leaves, all with smaller cells, suggesting that these plants may have less palmitic acid available for incorporation into extraplastidial membrane lipids during cell expansion. Thus manipulation of FatB expression in cotton directly influenced palmitic acid levels. Collectively, data presented in this dissertation support the hypothesis that there indeed is a palmitoyl-ACP thioesterase in cotton, encoded by the isolated FatB cDNA, which plays a major role in regulating palmitic acid content of extraplastidial complex glycerolipids. This work forms the basis for future studies of the influence of palmitic acid content on plant membrane function and provides a key target for the metabolic engineering of palmitic acid levels in storage oils of developing cottonseeds.

Degree:
Level: Doctoral
Discipline: Biochemistry
Language(s):
Subject(s):
Keyword(s): Palmitic acid | palmitoyl-acyl carrier protein | ACP | thioesterase | PATE | cotton FatB cDNA clone
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • OCLC: 51031837 |
  • ARK: ark:/67531/metadc2891
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Public
License: Copyright
Holder: Huynh, Tu T.
Statement: Copyright is held by the author, unless otherwise noted. All rights reserved.