
 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
APPROVED: 
 
Paolo Grigolini, Major Professor 
Arkadii Krokhin, Committee Member 
Guenter Gross, Committee Member 
Jacek Kowalski, Committee Member 
David Schultz, Chair of the Department of 

Physics  
Mark Wardell, Dean of the Toulouse 

Graduate School 

COOPERATION-INDUCED CRITICALITY IN NEURAL NETWORKS 

Marzieh Zare, M.S. 

Dissertation Prepared for the Degree of 
 

DOCTOR OF PHILOSOPHY 
 

UNIVERSITY OF NORTH TEXAS 
 

August 2013 



Zare, Marzieh. Cooperation-Induced Criticality in Neural Networks. Doctor of 

Philosophy (Physics), August 2013, 81 pp., 1 table, 28 illustrations, bibliography, 84 

titles. 

 The human brain is considered to be the most complex and powerful information-

processing device in the known universe. The fundamental concepts behind the physics 

of complex systems motivate scientists to investigate the human brain as a collective 

property emerging from the interaction of thousand agents. In this dissertation, I 

investigate the emergence of cooperation-induced properties in a system of interacting 

units. 

 I demonstrate that the neural network of my research generates a series of 

properties such as avalanche distribution in size and duration coinciding with the 

experimental results on neural networks both in vivo and in vitro. Focusing attention on 

temporal complexity and fractal index of the system, I discuss how to define an order 

parameter and phase transition. Criticality is assumed to correspond to the emergence 

of temporal complexity, interpreted as a manifestation of non-Poisson renewal 

dynamics. In addition, I study the transmission of information between two networks to 

confirm the criticality and discuss how the network topology changes over time in the 

light of Hebbian learning. 
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CHAPTER 1  

INTRODUCTION 

A complex system is a system composed of interconnected units that as a whole 

exhibit a behavior not predictable from the behavior of the individual parts [1-2]. Few 

examples of these systems are ant colonies, human economies, social structures, and 

the human brain.  

The human brain is considered as the most complex object in the known 

universe. The study of the brain and mind are inseparable [3]. The fundamental 

concepts behind the physics of complex systems motivated scientists to investigate the 

mind as a collective property emerging from the interaction of billions of agents [4]. The 

main concern is to understand cognition- its processes and its mechanisms at the level 

of molecules, neurons, networks of neurons, and cognitive modules [5]. 

In addition, scientists investigate how to define the collective behavior of neurons 

and how to explain animate behavior, decision making, and consciousness in the brain 

as a system governing the self-organization of large communities of locally interacting 

neurons [6]. Another key question to be answered is how information is transferred 

within the brain and between two brains as listener and speaker. The theoretical 

analysis and simulation help exploration of design parameters in wider ranges and in 

isolation, and help to understand the impact of each parameter on the observed 

behavior of the system. 

 There are different models defining the behavior of the neurons in the brain 

which aim for different computational purposes, while goals sometimes overlap. One of 

these models which used in this research is the leaky integrate-and-fire model [7]. This 
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model defines the global behavior of the neural system, making it a good candidate for 

using in study of the brain as a complex system. 

 Explaining the brain’s overall behavior in terms of the underlying mechanism is a 

challenging problem, very difficult, if not impossible to solve. Some empirical results 

including avalanche analysis [8-9], dynamic range [10], information storage [11-13], 

information transmission [14-15] and computational power [16-19] suggest that the brain 

may work near criticality. Similar to other complex phenomena such as earthquakes, 

snow avalanches and forest fires, avalanches in neural networks are found to follow the 

popular scale-free distribution [20]. According to the popular view of Bak et. al. [6] 

criticality is realized spontaneously by complex systems rather than requiring the fine 

tuning of a control parameter with a critical value. They proposed the term self-

organized criticality (SOC), as an operation of the system at criticality that generates the 

power law behavior in natural phenomena.  

In this dissertation, cooperation is the key ingredient of the model that defines the 

interaction of units in the network. Cooperation-induced criticality has the effect of 

creating dynamical processes that the ordinary equilibrium statistical physics does not 

explain. The attention is focused on the criticality, and as is proposed by Werner [21], 

criticality and the renormalization group theory [22], the main theoretical tool to study 

criticality, play a fundamental role for the brain function and further theoretical advances 

in this direction may lead to viewing consciousness as a criticality-generated physical 

phenomenon.  

 This dissertation is organized as follows. Chapter 2 serves the purpose of 

introducing the mathematical concepts of the function defining the complexity in the 
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model, called Mittag-Leffler (ML) function and some of its properties. In chapter 3, the 

model defining the behavior of neural network of this research is discussed. Moreover, 

the network used throughout this manuscript is introduced and the cooperative behavior 

is theorized. Next, in chapter 4, we focus our attention on temporal complexity and 

fractal index of the system, an order parameter is suggested. It is shown that the system 

makes a transition from non-cooperative (random) state to a fully cooperative (periodic) 

state where complexity emerges in between. As a rigorous proof of criticality, the 

information transfer from one network to another is studied. The results show the 

maximal correlation and mutual information exist at criticality. Distribution of neural 

avalanches in size at criticality does not display power law scaling of 1.5, contradicting 

the widely shared conviction emerging from research on neural networks [8] while, 

coinciding with the few recent experiments on the real brain [23]. In chapter 5, It is 

shown that the emergence of the ML function is due to the low density of units in the 

that leads to the coexistence of complexity and periodicity. In chapter 6 two distinct form 

of survival probability truncation is discussed. Chapter 7 serves as the study of 

cooperation-induced topology of the network at criticality. Chapter 8 contains main 

conclusions and directions for future work. 
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CHAPTER 2  

THE MITTAG–LEFFLER FUNCTION MODELS COOPERATION 

This chapter is devoted to the introduction of the Mittag-Leffler (ML) function 

used throughout the entire manuscript to model the cooperation. Some discussions are 

brought to connect the distribution generated by the neural network of this research to 

the ML function. It is not intended as a comprehensive material about the ML function 

and serves only for the purpose of this research. 

 

2.1 The Survival Probability as the Mittag-Leffler Function  

The survival probability is defined as the chance that a target will survive a given 

operation. In complex systems perspective, survival is connected to the events 

generated in time. Throughout this manuscript, the main event of the neural system 

would be neural firing. Hence, the survival probability is the probability that a neuron 

does not fire for a time distance of 𝑡, written as 𝛹(𝑡), and the time derivative of survival 

probability is waiting time distribution, 𝜓(𝑡), defined as 𝜓(𝑡) = −𝑑𝛹(𝑡) ⁄ 𝑑𝑡. Waiting time 

distribution is defined as 

𝜓(𝑡) ∝
1
𝑡𝜇

                                                                                       (2.1) 

and the corresponding survival probability reads as 

Ψ(𝑡) ≡ � 𝜓(𝑡′)𝑑𝑡
∞

𝑡
′ ∝

1
𝑡𝜇−1

                                                                       (2.2) 

Now, let us examine how the ML function models relaxation of the survival probability of 

the neural network under study.  

4 



 Metzler and Klafter [24] explain how the ML function established a compromise 

between two apparently conflicting complexity schools, the advocates of inverse power 

laws and the advocates of stretched exponential relaxation (see also West et al. [25]). 

We assign Ψ�(𝑢) to the Laplace transform of survival probability, the following form (we 

adopt the notation for the Laplace transform Ψ�(𝑢) ≡ ∫ 𝑑𝑡 Ψ(𝑡) exp(−𝑢𝑡)   ∞
0 ) 

Ψ� (𝑢) =
1

𝑢 + 𝜆𝛼(𝑢 + Γ𝑡)1−𝛼
                                                                         (2.3) 

With 𝛼 < 1 . In the case,   Γ𝑡 = 0, this is the Laplace transform of the ML function [24], a 

generalization of the ordinary exponential relaxation which interpolates between the 

stretched exponential relaxation 𝑒𝑥𝑝 (−(𝜆𝑡)𝛼), for 𝑡 < 1/𝜆  and the inverse power law 

behavior 1/𝑡 𝛼, for 𝑡 > 1/𝜆.  

 Recent work [26] has revealed the existence of quakes within the human brain, 

and proved that the time interval between two consecutive quakes is well described by 

a survival probability Ψ(𝑡), whose Laplace transform fits very well the prescription of Eq. 

2.3. The parameter   Γ𝑡 > 0  has been introduced [26-27] to take into account the 

truncation thought to be a natural consequence of the finite size of the time series under 

study. As a matter of fact, when 1/𝜆 is of the order of the time step and  1/ Γ𝑡 is much 

larger than the unit time step, the survival probability turns out to be virtually an inverse 

power law, whereas when 1/𝜆 is of the order of  1/ Γ𝑡 and both are much larger than the 

unit time step, the survival probability turns out to be a stretched exponential function. 

 Failli et al. [27] illustrate the effect of establishing a cooperative interaction in the 

case of the random growth of surfaces. A growing surface is a set of growing columns 

whose height increases linearly in time with fluctuations that, in the absence of 

cooperation, would be of Poisson type. The effect of cooperative interaction is to turn 
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the Poisson fluctuations into complex fluctuations; the interval between two consecutive 

crossings of the mean value being described by an inverse power law waiting time 

distribution 𝜓(𝑡), corresponding to a survival probability, whose Laplace transform is 

given by Eq. 2.3.  

 In conclusion, according to the earlier work [27], we interpret 𝛼 < 1  as a 

manifestation of the cooperative nature of the process. In this research we illustrate a 

neural model where the time interval between two consecutive firings, in the absence of 

cooperation is described by an ordinary exponential function, thereby corresponding to 

𝛼 = 1. The effect of cooperation is to make 𝛼  decrease in a monotonic way, when 

increasing the cooperation strength, 𝐾, with no special critical value. 

 

2.2 The Mittag-Leffler Function and Inverse Power Law 

 We note that Barabasi [28] stressed the emergence of the inverse power law 

behavior, properly truncated, as a consequence of the cooperative nature of human 

actions. Here we interpret the emergence of the ML function structure as an effect of the 

cooperation between neurons. The emergence of a stretched exponential function 

confirms this interpretation, if we adopt an intuitive explanation of it based on the 

distinction between the attempt to cooperate and to succeed. The action generator is 

assumed not to be fully successful, and a success rate parameter 𝑃𝑆 <  1 is introduced 

with the limiting condition 𝑃𝑆 =  1 corresponding to full success.  

 To turn this perspective into a theory, yielding the theoretical prediction of Eq. 

2.3, we assume that the time interval between two consecutive cooperative actions is 

described by the function 𝜓𝑆(𝜏), where the superscript (𝑆) indicates that from a formal 
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point of view we realize a process corresponding to subordination theory [29-32]. Here 

we make the assumption that the survival probability for an action, namely the 

probability that no action occurs up to a time 𝑡 after an earlier action has the form 

Ψ𝑆(𝑡) = �
𝑇𝑆

𝑡 + 𝑇𝑠
�
𝛼

                                                           (2.4) 

With 𝛼 = 𝜇𝑠 − 1  and 𝜇𝑠 < 2 . As a consequence, the time interval between two 

consecutive actions has the distribution density 𝜓𝑆(𝜏) of the form  

𝜓𝑆(𝜏) = (𝜇𝑆 − 1)
𝑇𝑆
𝜇𝑆−1

(𝜏 + 𝑇𝑆)𝜇𝑆                                                  (2.5) 

 Note that the distance between two actions is assumed to depart from the 

condition of ordinary ergodic statistical mechanics. In fact, the mean time distance 𝜏 

between two consecutive actions emerging from the distribution density of Eq .2.5 is 

〈𝜏〉 =
𝑇𝑆

𝜇𝑆 − 2
                                                                   (2.6) 

For 𝜇𝑆 > 2. For 𝜇𝑆 < 2, Eq. 2.6 diverges. As a consequence this process shares the 

same non-ergodic properties as those generated by human action [28]. 

 It is evident that when 𝑃𝑆 = 1 the survival probability Ψ(𝑡) is equal to Ψ𝑆(𝑡) =

∫ 𝜓𝑆∞
𝑡 (𝑡′)𝑑𝑡′. When 𝑃𝑆 < 1, from Appendix A using the formalism of the subordination 

approach [26-27,29], we easily prove that  the Laplace transform of Ψ(𝑡) is given by  

Ψ�(𝑢) =
1

𝑢 + 𝑃𝑆Φ� (𝑢)
                                                        (2.7) 

Where  

Φ� (𝑢) =
𝑢𝜓�𝑆(𝑢)

1 − 𝜓�𝑆(𝑢)
                                                            (2.8) 
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 To prove the emergence of the ML function of Eq. 2.3 with Γ𝑡 = 0, from this 

approach, let us consider for simplicity’s sake the case where 𝜓𝑆(𝜏) is not truncated. In 

the non-ergodic case, using the Laplace transform method [25], we obtain that the 

limiting condition yields Eq. 2.3 with 

𝜆 = �
𝑃𝑆

𝛤(1 − 𝛼)
1
𝑇𝑆𝛼
�
1/𝛼

                                                           (2.9) 

where 𝛤(1 − 𝛼) is the Gamma function. Note that when 𝑃𝑆 =  1, the Laplace transform 

of Eq. 2.7 in the limit of 𝑢 → 0 coincides, as it must, with the Laplace transform of ΨS(t). 

In conclusion, we obtain 

Ψ� (𝑢) =
1

𝑢 + 𝜆𝛼𝑢1−𝛼
                                                         (2.10) 

With 𝜆𝛼 ∝  𝑃𝑆 . In the neural model of this research, we define a parameter of 

cooperation effort, denoted by the symbol 𝐾 . The success of cooperation effort is 

measured by the quantity 

𝑔(𝐾) = 𝜆(𝐾)𝛼(𝐾)                                                       (2.11) 

We determine that the sign of success is given by the number of neurons firing at the 

same time.  

 In the next chapters, it is explained how to establish a connection between the 

ML function introduced here and the cooperation-induced criticality of the neural 

network under study.  
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CHAPTER 3  

MODEL DESCRIPTION 

This chapter serves as a description of the system of cooperating neurons in the 

leaky integrates-and-fire model. First, a system of fully synchronized neurons is 

introduced; next, a modified version of this model, which is the core model of this 

manuscript, is studied. It is shown that the neural system of this study generates neural 

avalanches in size and time comparable to the empirical results on neural networks 

both in vivo and in vitro. 

 

3.1 The Mirollo-Strogatz Model 

Neuronal synchronization was found to be the main source of neuronal 

avalanches, while the theoretical foundation of these processes is still open [33]. A 

neuronal avalanche is a cascade of bursts of activity in neuronal networks whose size 

distribution can be approximated by a power law, as in critical sandpile model [6]. 

Neuronal avalanches were observed in cultured and acute cortical slices [8]. 

 A model of synchronization of pulse-coupled oscillators was studied based on 

Peskin’s model [34]. The main purpose of studying this model was self-synchronization 

of the cardiac pacemaker by Mirollo and Strogatz [35]. The model is a network of N 

integrate-and-fire neurons. The equation of motion of each neuron follows 

𝑑𝑥𝑖
𝑑𝑡

= −𝛾𝑥𝑖 + 𝑆                                         𝑖 = 1, … ,𝑁                      (3.1) 

where 𝑥𝑖  denotes the neuron potential, 1/𝛾 is a constant governing the decay of the 

voltage back to the resting level and 𝑆  is a positive constant making the potential 

essentially increase with time. When 𝑥𝑖  reaches the threshold value Θ , it fires and 
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instantly sets to zero, 𝑥𝑖 = 0. We can find the trajectory of each neuron; assuming 

 𝑥�(𝑡) = 𝑥 − 𝑆
𝛾
, and setting  𝑥(0) = 0, we get 

𝑥𝑖(𝑡) =
𝑆
𝛾

(1 − 𝑒−𝛾𝑡)                                                              (3.2) 

For simplicity, the threshold is defined as Θ = 1, hence the time for a single neuron to 

reach the threshold is given by 

𝑇𝑀𝑆 =
1
𝛾

ln�
1

1 − 𝛾
𝑆

�                                                                        (3.3) 

in which 𝑆 > 𝛾 forces each neuron to move positively toward the threshold. The spiking 

pattern of this model is shown in Panel a of Fig. 3.1; as is seen from the figure, all 

neurons synchronize after a period of time around the value predicted by Eq. 3.3. The 

trajectory of a single neuron corresponding to Eq. 3.2 is shown in Panel b of Fig. 3.1, 

the single neuron moves toward the threshold with the period of Eq. 3.3.  

Here, the case in which all neurons interact with each other, or in other words, 

cooperate through pulse-coupling is considered, and is called All-To-All (ATA). When 

one neuron fires all the others are pulled up by a value 𝐾 which is called cooperation 

strength or coupling. With this model, Mirollo and Strogatz proved that over a long 

enough observation time all neurons would synchronize with the period of Eq. 3.3. This 

gives us the waiting time distribution of time distances between two consecutive firing 

as 

𝜓(𝜏) = 𝛿(𝜏 − 𝑇𝑀𝑆)                                                                          (3.4) 
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Fig. 3.1. Illustration of the Mirollo-Strogatz synchronization. Spiking pattern of a system 
of neurons in ATA network. After a while all neurons synchronize (a). Trajectory of a 
single neuron is depicted; neuron starts from a random value or zero, and reaches the 
threshold which is set to 1(b). 
 
 

3.2 Stochastic Version of the Mirollo-Strogatz Model 

 Due to the deterministic nature of the Mirollo-Strogatz neuron model leading to 

the waiting times distribution of Eq. 3.4, this model is clearly unrealistic with no 

complexity. To make it more realistic and to generate complexity as well, it is 

appropriate to replace Eq. 3.1 with the stochastic equation as suggested by the authors 

of Ref. [36] as: 

𝑑𝑥𝑖
𝑑𝑡

= −𝛾𝑥𝑖 + 𝑆 + 𝜉(𝑡)                    𝑖 = 1, …𝑁             (3.5) 

Here, 𝜉(𝑡) is a Gaussian random fluctuation as 

< 𝜉(𝑡)𝜉(𝑡′) >=  𝜎2𝛿(|𝑡 − 𝑡′|)                                                                  (3.6) 
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Fig. 3.2. The Potential of a single neuron in time in the presence of noise. The noise has 
the effect of making the behavior stochastic; neuron fire earlier or later than the period 
of Eq. 3.3. 
 

The addition of noise has the effect of changing the firing of a single neuron into 

stochastic pattern of activity as if it may fire earlier or later than  𝑇𝑀𝑆 (See Fig. 3.2). With 

the same treatment as that of the Mirollo-Strogatz model, when one neuron fires all the 

neurons connected to it are pulled up by a value of   𝐾  which is the cooperation 

parameter. In order to make it more clear, Eq. 3.5 with considering noise and 

cooperation may be written as 

𝑑𝑥𝑖
𝑑𝑡

= −𝛾𝑥𝑖 + 𝑆 + 𝜉(𝑡) + 𝐾�𝑎𝑗

𝑁

𝑗=1

Λ𝑖𝑗𝛿�𝑡 − 𝑡𝑗 − 𝑡𝑑�               𝑖, 𝑗 = 1, …𝑁             (3.7)  

in which 𝑎𝑖 refers to the excitatory connection if 𝑎𝑖 = 1 or inhibitory connection if 𝑎𝑗 =

−1; Λ𝑖𝑗 is element of an adjacency matrix1 defining connection of neuron 𝑖 to neuron 𝑗;  𝑡 

1 Adjacency matrix is a matrix that defines the connection between neurons in a network. This matrix is of 
size NxN, where N is the number of neurons in the network. If for example, neuron 1 is connected to 
neuron 2, then Λ𝑖𝑗 = 1, otherwise Λ𝑖𝑗 = 0. The symmetric adjacency matrix is used to define the directed 
connections, which is the type of connection that we use here. If the connections are indirect, the 
adjacency matrix is asymmetric.  
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is the time of realization; 𝑡𝑗 is the time of firing of neuron 𝑗, here is (𝑡𝑗 = 𝑡); and 𝑡𝑑 is the 

time lag of firing neuron from the time of receiving the cooperation. 

 For the sake of simplicity, the time lag of cooperation is set to zero. The results, 

not shown here, of considering delay time proportional to the distance of neurons in the 

network shows no significant change in the nature of complexity that is the interest of 

this research. In the numerical calculations of this research, we adopt two different initial 

conditions: the former is based on assigning 𝑥0 = 0 to all neurons at the rest state and 

in the latter condition 𝑥0  is a random numbers between 0 and 1. In Chap.4, we will 

discuss that the correlation and mutual information between two networks depends on 

the initial condition of 𝑥. 

Considering Eq. 3.5, there are two possible discussions on the stochastic version 

of the Mirollo-Strogatz; Eq. 3.5, i) 𝛾 = 0  and ii)  𝑆 = 0 . The former is called perfect 

integrator. The waiting time distribution, 𝜓(𝜏) in this case, can be solved using the first 

passage time formalism. Hence, Eq. 3.5 may be written as 

𝑑𝑥
𝑑𝑡

= 𝑆 + 𝜉(𝑡)                                                                       (3.8) 

The Fokker-Planck equation reads as [37] 

𝜕
𝜕𝑡
𝑝(𝑥, 𝑡 𝑥0⁄ ) = �−𝑆

𝜕
𝜕𝑥

+ 𝐷
𝜕2

𝜕𝑥2
� 𝑝(𝑥, 𝑡 𝑥0⁄ )                                       (3.9) 

𝑝(𝑥, 𝑡 𝑥0⁄ ) is the probability of finding the particle at position 𝑥 at time 𝑡, 𝐷 is the diffusion 

coefficient, and 𝑥0is the initial position of the particle. Setting the threshold at 𝑥0 = Θ, so 

to speak, the system is prepared at the threshold; the solution of Eq. 3.9 is written as 

𝑝(𝑥, 𝑡 Θ⁄ ) =
1

(4𝜋𝐷𝑡)1/2 𝑒𝑥𝑝 �−
(𝑥 − Θ − 𝑆𝑡)2

4𝐷𝑡
�                                          (3.10) 
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To find the waiting time distribution, 𝜓(𝜏), the relation below is used 

𝑝(𝑥, 𝑡 𝑥0⁄ ) = � 𝑑𝜏𝜓(𝜏)
𝑡

0
𝑝 �𝑥, 𝑡 −

𝜏
Θ
�                                               (3.11) 

From Appendix B, we obtain 

𝜓(𝑡) =
(𝛩 − 𝑥0)

(4𝜋𝐷𝑡3)
1
2

𝑒𝑥𝑝 �−
(𝛩 − 𝑥0 − 𝑆𝑡)2

4𝐷𝑡
�                              (3.12) 

Then substituting 𝑥0 = 0, 𝛩 = 1 , and 𝐷 = 𝜎2, we arrive at 

𝜓(𝑡) =
1

(4𝜋𝐷𝑡3)
1
2

𝑒𝑥𝑝 �−
(1 − 𝑆𝑡)2

4𝜎2𝑡
�                                      (3.13) 

The waiting time distribution of Eq. 3.13 was originally found by Mandelbrot [38]. This 

distribution is plotted in Fig. 3.3. Upon increase of noise, there is a shifting of the peak 

to the left thereby producing a slow tail that is proportional to 1/𝑡𝜇  with 𝜇 = 1.5 . 

However, the tail is truncated and for 𝑡 → ∞ we have 

𝜓(𝑡) ∝
1
𝑡1.5 𝑒𝑥𝑝 �−�

𝑆
𝜎
�
2 𝑡

4
�                                                                (3.14) 

For further reading, see Ref.[38]. 

In the neural system under study, setting 𝛾 = 0 in Eq. 3.3, we get 𝑇𝑀𝑆 ≈ 1 𝑆⁄ , 

thereby simplifying the numerical calculations. It seems that many neurophysiologists 

believe that 𝛾 > 0 makes the neural model more realistic. In this study the choice of 

𝛾 > 0 is not essential and the main reason behind the adoption of that is because the 

Mirollo-Strogatz model [35] rests on this condition.  
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Fig. 3.3. Illustration of the analytical solution of the perfect integrator. Increasing the 
noise intensity has the effect of broadening the waiting time distribution and shifting the 
peak to the left. 
 

To the best of our knowledge, there is still no analytical solution for  𝛾 > 0. We 

have numerically evaluated the waiting time distribution of a single neuron in the system 

of interacting neurons for different values of noise. As shown in Fig. 3.3, noise has the 

effect of widening the waiting time distribution and shifting the peak to the left. For our 

numerical purposes, we adopted 𝑆 = 0.001005 and 𝛾 = 0.001. The choice of a proper 

value for the noise rests on the analytical discussion of perfect integrator. In fact, this 

value is chosen as if the waiting time distribution peaks at 𝑇𝑀𝑆. With this choice, we can 

make sure that the value of noise in the system is enough to make the system 

stochastic and lose its initial condition to perceive the cooperative behavior. The arrow 

in Fig. 3.4 indicates the period of Eq. 3.3,  𝑇𝑀𝑆 , and as is seen, the waiting time 

distribution is maximized at this time for  𝜎 = 0.0001.  
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Fig.  3.4. Numerical calculation of the waiting time distribution of a single neuron for 
different noise intensities. Similar to analytical counterpart, increasing the noise intensity 
has the effect of shifting the peak to the left and widening the distribution. The peak 
should correspond to the given time of Eq. 3.3, here is 5300. 
 

This value of the noise is used throughout the numerical calculations of this manuscript.

 Another possible analytical discussion is 𝑆 = 0, called overdamped oscillator. In 

this case Eq. 3.5 becomes 

𝑑𝑥𝑖
𝑑𝑡

= −𝛾𝑥𝑖 + 𝜉(𝑡)         𝑖 = 1, …𝑁                                           (3.15) 

This is identical to Kramers problem [39]. In the neural system, we choose 𝑆 > 𝛾 > 0 in 

order to force neurons move positively toward the threshold in order to make the model 

behave as real neurons. Hence, the case of 𝑆 = 0 does not apply on the neural model 

of this research and this case was only mentioned to complete the analytical discussion 

of this section. 
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3.3 Neurons Cooperative Behavior 

The cooperative properties of the networks are determined as follows. Each 

neuron is the node of a network and interacts with all the other nodes linked to it. When 

a neuron fires all the neurons linked to it make an abrupt step ahead by a value of 𝐾. 

This is the cooperation parameter, or coupling strength. An inhibition link may be 

introduced by assuming that when one neuron fires all the other neurons linked to it 

make a step backward through inhibition links. This model is richly structured and may 

allow us to study a variety of interesting conditions.  

There is widespread conviction that the efficiency of a network, namely its 

capacity to establish global cooperative effects, depends on network topology, as 

suggested by the brain behavior [26,40]. The link distribution itself, rather than being 

fixed in time, may change according to the Hebbian learning principle [41]. It is expected 

that such learning generates a scale-free distribution [40], thereby shedding light on the 

interesting issue of burst leaders [42]. These properties are studied in this research. 

 Herein, we focus on cooperation by assuming that all the links are excitatory. To 

further emphasize the role of cooperation, the ATA assumption adopted by Mirollo and 

Strogatz [35] was studied in an earlier work [43]. In spite of the fact that the efficiency of 

the ATA model is reduced by the action of the stochastic force 𝜁(𝑡) that weakens the 

action of cooperation, thereby generating time complexity, the ATA condition generates 

the maximal efficiency and neuronal avalanches. However, this condition inhibits the 

realization of an important aspect of cooperation, namely, locality breakdown. For this 

reason, herein, we also study the case of a regular lattice, two-dimensional (2D) 
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network, where each node has four nearest neighbors and consequently four links 

(configuration of the network is shown in Fig. 3.5).  

 It is important to stress that to make our model as realistic as possible, we can 

introduce a delay time between the firing of a neuron and the abrupt step ahead of all its 

nearest neighbors. This delay is assumed to be proportional to the Euclidean distance 

between the two neurons, and it is expected to be a property of great importance to 

prove the breakdown of locality when the scale-free condition is adopted. As mentioned 

before, the simplified conditions studied in this research would not be affected by a time 

delay that should be the same for all the links. For this reason, we do not further 

consider time delay.  

For the cooperation strength we must assume the condition 𝐾 ≪ 1. When 𝐾 is of 

the order of magnitude of the potential threshold 𝛩 = 1 , the collective nature of 

cooperation is lost because the firing of a few neurons causes an abrupt cascade in 

which all the other neurons fire. Thus, we do not consider the non-monotonic behavior 

of network efficiency to be important that our numerical calculations show to emerge by 

assigning 𝐾 values of the same order as the potential threshold.  

 
Fig. 3.5. Configuration of the regular lattice under study. Single node and its four 
nearest neighbors with whom it interacts are marked. 
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We also note that in the case of this model the breakdown of the ML structure, at 

large times, is not caused by a lack of cooperation, but by the excess of cooperation. To 

shed light on this fact, keep in mind that this model has been solved exactly by Mirollo 

and Strogatz when 𝜎 = 0 [35]. In this case, even if we adopt initial random conditions, 

after a few steps, all the neurons fire at the same time, and the time distance between 

two consecutive firings is given by Eq. 3.3. As an effect of noise the neurons can also 

fire at the same times, and consequently, setting 𝜎 > 0, a new, and much shorter time 

scale is generated. When we refer to this as the time scale of interest, the Mirollo and 

Strogatz time 𝑇𝑀𝑆, plays the role of a truncation time and  

Γ𝑡 ≈
1
𝑇𝑀𝑆

                                                                   (3.16) 

To examine this condition, let us assign to 𝐾 a value very close to 𝐾 =  0. In this 

case even if we assign to all the neurons the same initial condition, 𝑥 =  0, due to the 

presence of stochastic fluctuations the neurons fire at different times thereby creating a 

spreading on the initial condition that tends to increase in time, even if initially the firing 

occurs mainly at times 𝑡 =  𝑛𝑇𝑀𝑆. The network eventually reaches a stationary condition 

with a constant firing rate 𝐺 given by 

𝐺 =
𝑁
〈𝜏〉

                                                                            (3.17) 

Where 〈𝜏〉 denotes the mean time between two consecutive firings of the same neuron. 

For 𝜎 ≪ 1, 〈𝜏〉 = 𝑇𝑀𝑆. From the condition of a constant rate 𝐺, we immediately derive the 

Poisson waiting time distribution 

𝜓(𝜏) = 𝐺𝑒−𝐺𝜏                                                           (3.18) 
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Consequently, this heuristic argument agrees very well with numerical results. We 

consider a set of 𝑁 identical neurons, each of which obey Eq. 3.5 and we also assume, 

with Mirollo and Strogatz [35], that the neurons cooperate. For the numerical simulation 

we select the condition  

𝐺 ≪ 1 ≪ 𝑁 ≪ 𝑇𝑀𝑆                                                                            (3.19) 

yielding 

1
𝐺
≈
𝑇𝑀𝑆
𝑁

≪ 𝑇𝑀𝑆                                                                                 (3.20) 

thereby realizing the earlier mentioned time scale separation. It is evident that this 

condition of non-interacting neuron fits Eq. 2.3 with 𝛼 = 1 and  

𝜆(𝐾 = 0) = 𝐺                                                                  (3.21) 

In this case, the time truncation is not perceived, due to the condition 1 𝐺⁄ ≪ 𝑇𝑀𝑆. In the 

next chapter numerical results will show more details about the effect of cooperation. 

 As far as the ML time complexity is concerned, we adopt the same fitting 

procedure as that used in Ref.[43]. We evaluate the Laplace transform of the 

experimental Ψ(𝑡) and use as a fitting formula Eq. 2.3 with Γ𝑡 = 0, to find the parameter 

𝛼. Then we fit the short-time region with the stretched exponential 

Ψ(𝑡) = 𝑒𝑥 𝑝(−(𝜆𝑡)𝛼)                                                    (3.22) 

To find 𝜆.  We determine that in the regular lattice condition as in the ATA condition [43], 

activation of cooperation has the effect of generating the ML time complexity. From the 

numerical results of the next chapter on fitting parameter of the ML function, we see that 

any non-vanishing value of 𝐾 turns the Poisson condition 𝛼 = 1 into the ML temporal 

complexity 𝛼 < 1. We have assessed numerically 〈𝜏〉=5300, using Eq. 3.18, 𝐺 = 0.0189 

and 𝑇𝑀𝑆 = 5303.3. In the case of no interaction, the probability that two neurons fire at 

20 



the same time is 𝐺2. Due to 𝐺 ≪ 1, the simultaneous firing of two neurons is almost 

impossible and the survival probability is exponential signaling a Poisson process.  

We shall see that survival probability makes a transition from Poissonian to non-

Poissonian process. An order parameter is suggested based on the phase transition 

gained from temporal complexity. As the result of cooperation, system shows interesting 

properties such as locality breakdown and long-rang correlation. 
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CHAPTER 4  

COOPERATION-INDUCED CRITICALITY IN REGULAR LATTICE 

 In this chapter, numerical calculations on the regular lattice are discussed. We 

start with spiking pattern of the neural network and survival probability distribution to 

define the temporal complexity. Temporal complexity suggests a critical point at which 

the phase transition occurs. To confirm the critical value, renewal properties and 

transmission of information is studied. Finally the self-organization criticality hallmark, 

avalanche distribution in time and size, are discussed to see if the system displays the 

crucial exponents of 1.5 in size [8] and 2 in time duration [8] at criticality. 

 

4.1 Spiking Pattern and Survival Probability 

 Spiking pattern is the most important output of a neural system, which indicates 

the cumulative number of spikes per unit of time. In practice, neurophysiologists record 

the spiking pattern and analyze them to understand the system’s behavior whether it is 

a living rat brain cultured on Microelectrode array2 or an Electroencephalography EEG 3 

pattern of a living brain. In this research, we also follow the same procedure which is in 

fact in line with our approach of studying temporal complexity. We make a distribution 

out of time series, which is the normal distribution, here called waiting time distribution 

Eq. 2.1 Followed by that, we calculate the corresponding cumulative distribution using 

Eq. 2.2. 

2Microelectrode arrays are substrates of integrated thin film conductors terminating in exposed recording 
sites through which neural signals are obtained or delivered, essentially serving as neural interfaces that 
connect neurons to electronic circuitry [44]. 
3 Electroencephalography (EEG) is the recording of electrical activity along the scalp. EEG measures 
voltage fluctuations resulting from ionic summations of millions of neuronal currents within the neurons of 
the brain [45]. 
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Fig. 4.1. Illustration of the data collection and analysis of the neural network under 
study. Spiking pattern for three different cooperation parameters is shown; increasing 
the cooperation makes neurons fire at the same time until they synchronize (a) 
trajectories of two random neurons (b), close view of a spiking pattern (c), survival 
probability gained from Panel c (d). 
 

 

Fig. 4.1 plots the procedure of data collection and analysis from regular lattice. 

Panel a represents the spiking pattern for different values of cooperation parameter, or 

coupling in the system. As is seen from the figure, increasing the value of cooperation  
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Fig. 4.2. Survival probability distribution for different values of cooperation in the regular 
lattice. Due to increasing the cooperation, that results in the increment of time distance 
between two consecutive firings survival probability decays slower. 
 

leads to the burst formation until the value of cooperation is too large that it makes the 

pattern totally periodic. Panel b shows the trajectory of two random neurons. Panel c is 

a close view of a spiking pattern that indicates visually how we evaluate the time 

distance between two consecutive firings and find the cumulative distribution shown in 

Panel d of Fig. 4.1.  

If we evaluate the survival probability for three spiking patterns of Panel a of Fig. 

4.1 and two other cooperation parameters, 𝐾 = 0.001 as dashed line, and 𝐾 = 0.0025 

as dotted line, we gain the plots shown in Fig. 4.2. These curves are the central results 

of a bunch of unshown curves for different values of cooperation parameter, K. Survival 

probability distributions indicate the following: Increment of coupling in the neural 

network extends the time distance between two consecutive firings, and as a 

consequence of extension of time distances, the survival probability distribution decays 

slower. If the cooperation is very large, all neurons fire together and make the waiting 

time distribution follow Eq. 3.3, and finally, survival probability distribution will look like 

24 



blue line of Fig. 4.2. We refer to this behavior as a transition from Poisson process to 

the ML dynamics and finally a breakdown of the ML function. More details will be 

discussed in the following sections which are devoted to description of criticality, and 

phase transition. 

 

4.2 Detection of Temporal Complexity 

 The mathematical concept of the ML function in Chap.2 was discussed. Therein, 

it was explained that the ML function models the cooperation. As we see from Fig. 4.3, 

two distinctive time regimes characterize the survival probability: short time and long 

time regimes that can be fitted by stretched exponential 𝑒𝑥𝑝 (−(𝜆𝑡)𝛼) with 𝛼 <  1 and 

inverse power law 1/𝑡𝛼 respectively.  

 Fitting parameters, 𝛼 and 𝜆 can be found under a fitting procedure. 𝛼 indicates 

the power law exponent of survival probability holding 0 < 𝛼 < 1, and 𝜆 indicates the 

scale of the stretched exponential of survival probability distribution. The procedure is 

shown in Fig. 4.3. This fitting procedure is accomplished on each time regime in two 

steps: fitting of the stretched exponential and fitting of the inverse power law. However, 

fitting on the Laplace transformation of survival probability can be done in a single step 

on the total observation time. It is important to note that the fitting parameters found in 

both cases are equal.  
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Fig. 4.3. Fitting procedure on survival probability in time representation for 𝐾 = 0.0018. 
black curve is an ordinary exponential fitted on the short time regime of the ML function 
with 𝛼 = 0.75 and 𝜆 = 0.034. Black line is an inverse power law fitted on the long time of 
the ML function with  𝛼 = 0.75. The fitting parameter 𝛼 has to be equal in both fittings as 
a condition of accurate procedure.  
 

Hence, it is more convenient to use the Laplace transform of survival probability 

and find the fitting parameters. In order to do this fitting, a procedure is done as follows:  

1.  Apply a Laplace transform on survival probability gained from neural dynamics. 

2.  Fit the data given in step 1 into Eq. 2.6 to find 𝛼 and 𝜆.  

3.  Repeat the procedure for different values of 𝐾. 

4.  Plot  𝛼 , 𝜆 ,and 𝜆𝛼  versus 𝐾  to see how the fitting parameters of survival 
probabilities are changing with increasing the coupling.  

As an example, for a value of 𝐾 = 0.0018 , step 1 and 2 are executed; the 

Laplace transform of survival is calculated and the fitting parameters are found, as is 

illustrated in Fig. 4.4. The Laplace transform of 𝑢 is  1/𝑡. The parameter 𝑢 is chosen to 

hold  𝜀 < 𝑢 < 0.1; the lower and upper limits of this condition are set to cover the long 

time and short time regime respectively. The choice of the lower limit, 𝜀, depends on the 
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natural time of the system-herein the system’s truncation time,  𝑇𝑀𝑆- Hence , 𝑢𝑙𝑜𝑤 ≈

1/ 𝑇𝑀𝑆.  

 
Fig. 4.4. Laplace transform of survival probability, Ψ(𝑢). The transformation is done in 
two different ways as shown in this plot: numerical and analytical. Numerical 
transformation is done applying the numerical Laplace transform on data of survival 
probabilities in time. The analytical was done by fitting the fitting parameters 𝛼 and 𝜆 
into Eq. 2.6. 
 

The upper limit is set in order to hold this condition: due to the discrete time, we need to 

make sure that the short time is fully covered thus  𝑡 >> 1, consequently 𝑡 ≈ 10 and 

𝑢𝑢𝑝𝑝 = 0.1. Finally, step 4 of the procedure is executed, which is repeating the fitting 

procedure on the Laplace transform of survival probability distribution for a wide range 

of cooperation parameters. Then  𝛼,  𝜆, and 𝜆𝛼 are plotted versus 𝐾. The results of this 

step are sketched in Fig. 4.5.  

The numerical results suggest the following interpretation: In the ideal case of a 

large number of interacting units, 𝛼 = 1 for 0 ≤ 𝐾 ≤ 𝐾𝐶 and the stretched exponential 

𝑒𝑥𝑝 (−(𝜆𝑡)𝑎), is an ordinary exponential with 𝜆 = 𝐺, (see Eq. 3.18 and Eq. 3.22). At 

𝐾 = 𝐾𝐶, the value of 𝛼 drops to a value smaller than 1 see Panel a of Fig. 4.5.  
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Fig. 4.5. Fitting parameters of survival probabilities in the regular lattice. a) The changes 
of power index with cooperation parameter. Notice the change in the steepness of 
descent near ≈ 0.0018 . b) The changes of power law index for systems of larger size 
are compared with the results of Panel a. As is obvious the abrupt change is more 
obvious when the size increases. c) Scale of stretched exponential, 𝜆 notice the abrupt 
change in 𝐾 ≈ 0.0018. d) 𝜆𝛼 or 𝑔(𝑘) according to Eq. 2.11 measures the success of an 
effort, the change at the same value of 𝐾 is considerable. 
 

The results of Panel b shows that the decrease of 𝛼 becomes more pronounced with 

increasing 𝑁. We ran the model on the larger system of  𝑁 = 400 , a square lattice of 

size 𝐿 = 20 and also 𝑁 = 900, a square lattice of size 𝐿 = 30. The results suggest that 

for a very large number of interacting units, 𝛼 may drop to 𝛼𝐶 ≈ 0.75, which corresponds 

to  

𝐾𝐶 ≈ 0.0018                                                                                     (4.1) 
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We interpret the steepness of changes as criticality. Panel a of Fig. 4.5. suggests a first 

order phase transition. 𝜆  and 𝜆𝛼  also show abrupt change at the same value of 

cooperation parameter as is seen in Fig. 4.5. 

 

4.3 Phase Transition 

 We have already shown in the previous section that the abrupt change in the 

fitting parameters might correspond to a critical value. In order to explore more in detail 

where the transition occurs, we need to determine the type of phase transition taking 

place here and discuss how to define an order parameter to find the critical value. The 

numerical results of the earlier work of our group [42,45] have established that 

cooperation is perceived immediately with a finite value of cooperation parameter 𝐾 of 

even extremely small intensity. This led these authors to make the conjecture that this 

neural model may be a manifestation of the extended criticality advocated by Longo 

et.al [46]. 4 

 Due to the action of a finite number, we propose a somewhat different 

interpretation based on the observation of the well known second-order phase 

transition.5 We cannot determine the critical value of 𝐾𝐶 , by using, for instance, the 

method of Binder’s cumulants [48] because this method is usually applied to Ising-like 

phase transitions, see for instance [49]. Here, though, the transition to cooperation does 

not seem to be an ordinary second-order phase transition. Using the parameter, 𝑔(𝑘) 

4In biology, the “coherent critical structures” are “extended” and organized in such a way that they persist 
in space and time. So there is not a single critical point but there is a wide range of critical values. 
5Second-order phase transitions are continuous in the first derivative (the order parameter, which is the 
first derivative of the free energy with respect to the external field, is continuous across the transition) but 
exhibit discontinuity in a second derivative of the free energy [47]. 
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that measures the success of an effort of the system to inter the cooperative regime, we 

define the order parameter of this process by means of Γ(𝐾) by  

Γ(𝐾) =  � 𝑑𝑘 𝜆𝛼
𝐾

0
                                                                   (4.2) 

This parameter is plotted in Fig. 4.6. The numerical result of Fig. 4.6 is 

qualitatively a function of control parameter, similar to the mean field of the Ising-like 

model of Ref.[49]. However, the nature of the supercritical region in the neural model of 

this research is completely different from that of Ref.[50]. We are led to believe that due 

to the lack of theory that defines the phase transition in biological systems, we cannot 

certainly determine the type of phase transition. Therefore, this subject remains for 

future works. 

The numerical results shown in Fig. 4.6 to some extent confirm the critical value 

suggested by Eq. 4.1. Based on this result and explanation provided on Fig. 4.5, three 

different regimes characterize the order parameter shown in Fig. 4.6. The region I, 

where 0 ≤ 𝐾 ≤ 𝐾𝐶  is called subcritical regime. Region II is the critical regime which 

denotes where the ML function appears with negligible periodicity contamination and 

𝐾 ≈ 𝐾𝐶 . The gray region indicates an overlap between region I and region II. The 

vertical arrow indicates the portion of region II where the inverse power law,  1 𝑡𝛼⁄ , 

distinctly emerges. The Region III begins almost immediately after the critical value of 

Eq. 4.1 and is a region significantly influenced by periodicity.  
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Fig. 4.6. The order parameter Γ(𝐾) in terms of 𝐾 in regular lattice. Three regions or 
regimes characterize the order in the system: region I, subcritical regime where the 
cooperation is not perceived by neurons, region II, critical regime; the region of interest 
where the temporal complexity is signaled by the ML function and region III is the 
supercritical regime where the system is dominated by periodicity and the ML function 
breakdown is observed. The gray region indicates an overlap between the two regimes. 
 

To make it easier for readers to understand the effect of periodicity on the ML 

relaxation, in Fig. 4.7, we have quantified the role of periodicity by means of the 

property 

𝑅(𝐾) = 𝐸𝛼(−(𝜆𝑇𝑀𝑆)𝛼)                                                                    (4.3) 

Here, 𝐸𝛼 is the exact ML function evaluated with the algorithm [51]. In the limiting case 

of complete periodicity, the survival probability Ψ(𝑡) = 1 and 𝑅(𝐾) = 1. In Fig. 4.7 we 

see that at 𝐾 < 𝐾𝐶 = 0.0018 , and 𝑅(𝐾)  is negligible and undergoes a fast increase 

when we move beyond 𝐾𝐶. 

This would be a convincing indication that criticality has the effect of triggering 

periodicity, if the critical value was proved to be a genuine criticality parameter. Finding 
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a value at which the phase transition occurs is a difficult task because at the moment, a 

theoretical approach to criticality for cooperative models of this kind is not yet available. 

Thus, we use two other methods to confirm the conjecture on critical value: i) testing of 

renewal properties ii) The information transfer. 

 

4.4 Testing of Renewal Properties 

 The criticality indicator that we are using in this research is temporal complexity, 

and according to the theoretical perspective of Refs.[50,52-53], temporal complexity is 

characterized by renewal aging. Renewal aging is a special form of aging that requires 

the following explanation. Aging is a property processes not in equilibrium. Assume that 

a system is prepared at time 𝑡 = 0 and generates a fluctuation 𝜁(𝑡) that is studied by its 

autocorrelation function 〈𝜁(𝑡2)𝜁(𝑡1)〉. 〈… 〉 refers to the Gibbs ensemble average.  

 
Fig. 4.7. Quantitative measure of periodicity for different values of cooperation 
parameter. A peak is observed at criticality where it is interpreted as the onset of 
periodicity. 
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We observe an infinite number of systems, each generating fluctuations and 

undergoing an out-of-equilibrium preparation at time  𝑡 = 0 . For each system, we 

calculate the product 𝜁(𝑡2)𝜁(𝑡1) and the average 〈𝜁(𝑡2)𝜁(𝑡1)〉 over all realizations. For 

thermodynamical equilibrium systems, the correlation function depends on |𝑡2 − 𝑡1| , 

corresponding to the stationary condition. This condition is ensured in the case where 

transition from out of equilibrium to equilibrium occurs with a finite time scale  𝑇𝑒𝑞 < ∞. 

Hence, if 𝑡2 > 𝑡1  and 𝑡1 ≫ 𝑇𝑒𝑞 , we have 〈𝜁(𝑡2)𝜁(𝑡1)〉 = Φζ(𝑡2 − 𝑡1) . This stationary 

condition is not fulfilled if 𝑡 < 𝑇𝑒𝑞 , in which  𝑇𝑒𝑞 = ∞ . Hence, the process is a non-

stationary process. 

This description of the non-stationary process leads to the conventional definition 

of aging as a process with correlation functions that not only depend on 𝑡2 − 𝑡1 but also 

on 𝑡1. 𝑡1is the age of the system. We need to turn the observation of a single time series 

into the observation process of an infinite number of copies of the same system. This is 

made possible by the renewal assumption: when an event occurs the system is 

supposed to have a new time evolution that does not have any memory of the earlier 

dynamics. The probability of occurrence of new events is exactly the same as if the 

system were born at the moment of producing that event. 

Thus, we generate a number of sequences {𝜏𝑖}; each of them derived from the 

same time series. This procedure produces infinitely copies of the same system, which 

are characterized by the occurrence of an event at the time origin. Using the same 

perspective, we can describe a time series as an ensemble of age 𝑡𝑎 denoted as �𝜏𝑎,𝑖�. 

This can be extended to all time series; beginning at a time 𝑡𝑎 after the first event. This 

set of sequences can be interpreted as a system of age 𝑡𝑎. Note that this corresponds 
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to the theoretical prescription in Ref.[54] to apply the Gibbs prescription. The method 

used here is called the aging experiment, to assess whether or not the process is 

renewal.  

 

4.4.1 Non-Stationary Correlation Function 

 The correlation function of age𝑡𝑎, Φζ(τ, 𝑡𝑎), is defined as 

Φζ(τ, 𝑡𝑎) ≡ 〈𝜁(𝑡2)𝜁(𝑡1)〉                                                                    (4.4)  

Here, 𝜏 ≡ 𝑡2 − 𝑡1 and 𝑡𝑎 = 𝑡1.  

We observe the system’s fluctuation at time 𝑡𝑎  far from the preparation time. 

According to a coin tossing prescription, we create a dichotomous signal by assigning 

either the value   𝜁 = +1, and 𝜁 = −1, to the time regions between two consecutive 

firings. The correlation function of age 𝑡𝑎 is determined by means of a moving window of 

size 𝑡𝑎 , with the left end located at the moment of a firing. We evaluate the time 

distance between the right end of the window and the first firing after that. The 

corresponding waiting time distribution is normalized and its survival probability is the 

non-stationary correlation function of Eq. 4.4. It is expected that the aged survival 

probability display slower de-correlation upon increasing the age. The procedure is 

shown in Fig. 4.8. Apparently, if 𝑡𝑎 = 0 , the correlation function coincides with the 

normal survival probability of Eq. 2.2.  

The sequence of time distances can be shuffled and the comparison between the 

shuffled and not shuffled aged survival probability allows us to assess if the process is 

renewal or not. If the shuffled and non-shuffled coincide, we conclude that the process 

is non-Poisson and renewal while if they don’t coincide, the process is not renewal. 
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Fig. 4.8. The aging experiment. The top Panel illustrates the original sequence of 
waiting times{𝜏𝑖}.Horizontal bars on the middle Panel represent aging time 𝑡𝑎. Gray 
arrows on the bottom Panel represent obtained aged times �𝜏𝑎,𝑖� [50]. 

 

With this procedure, we obtain the result of Fig. 4.9. In Panel a of the figure, the 

procedure is done on the system at criticality, 𝐾 = 0.0018 and in Panel b the system at 

supercritical regime which is dominated by periodicity,  𝐾 = 0.0032. We see that for the 

critical value, the process is totally renewal and according to our prediction the value of 

criticality according to Eq. 4.1 is confirmed, while for the system at supercritical regime, 

the process is not renewal in the long-time regime. 

 
Fig. 4.9. The aging experiment on the system for 𝐾 = 0.0018 (a), and for 𝐾 = 0.0032 
(b). The choice of age depends on the time that system starts truncation. In the former 
case the process is totally renewal, while in the latter the long time is not renewal due to 
periodicity. 
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4.4.2 Aging Intensity 

 Renewal aging is a manifestation of deviation from the condition of ordinary 

thermodynamical equilibrium and can be used to measure the departure from the 

Poisson condition. Cooperation makes the neural system violate the Poisson condition. 

Therefore, aging can be used as an indicator of the transition from the non-cooperative 

to the cooperative behavior. We evaluate the aging intensity by using 

𝛿(𝑡𝑎) = � |Ψ𝑎(𝑡) −Ψ(𝑡)| 𝑑𝑡                                                               (4.5) 
𝑡

0
 

Here, Ψ𝑎(𝑡) denotes the survival probability of age 𝑡𝑎. Fig. 4.10. shows that 𝐾𝑐 = 0.0018 

belongs to the region of cooperation where the aging intensity increases abruptly. 

 
Fig. 4.10. Aging intensity for different values of cooperation parameters and different 
ages of the system. The arrow indicates the value of 𝐾 expected to correspond to the 
genuine criticality of the process. 
 

It is important to note that the maximal amount of aging intensity is observed at values 

of 𝐾 significantly larger than 𝐾𝑐 = 0.0018, thereby suggesting that criticality may hold 
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true for larger values of 𝐾. We must stress that in this kind of experiment, the aging 

intensity is evaluated with no distinction between renewal and non-renewal aging, and 

that for values of 𝐾 larger than 𝐾𝑐, periodicity may break the renewal condition. 

Based on the results of this section, we claim that the critical point of Eq. 4.1 is 

confirmed to some extent. If this is proved by means of information transfer in the next 

section, we are led to conclude that temporal complexity is a proper measure of 

criticality. 

 

4.5 Information Transfer at Criticality 

 There are many simulations in the literature claiming that at criticality, the brain 

shows maximal functionality through information transfer [11-13], information storage 

[14-15] and dynamical range [10]. Hence, if there is a point at which correlation and 

mutual information between two networks is maximal, that point would be criticality. We 

use this measure to confirm the criticality found by temporal complexity.  

Thus, we study two identical networks: network 𝑆 and network  𝑃 with the same 

initial conditions. We perturb network 𝑆 with network 𝑃 and monitor the transmission of 

information from network 𝑃 to network 𝑆. The coupling of 𝑆 with 𝑃 is as follows; We 

select randomly a subset Δ𝑆 of the neurons of the network   𝑆, moreprecisely 3% of the 

neurons of 𝑆 and a subset Δ𝑃 namely 3% of neurons of system 𝑃. Each neuron of the 

subset Δ𝑆 iscoupled with a neuron of the subset Δ𝑃 and is forced to adopt its trajectory, 

𝑥(𝑡). The spiking pattern of network 𝑆 before and after perturbation and spiking pattern 

of network 𝑃 are illustrated in Fig. 4.11. As is seen from this figure, after a short time, 

two systems start synchronizing signaled by overlapping spiking pattern. 
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Fig. 4.11. Spiking pattern of Network 𝑆 before and after perturbation and spiking pattern 
of Network 𝑃. Only 3% of nodes are perturbed. In window I, it takes a while for system S 
to respond to system P. Thereafter, the two networks are almost synchronizing. Two 
other windows are showing a better resolution of the spikes in time. 

 

We study the correlation of the network 𝑆 with the network 𝑃 by means of the 

correlation function [55] 

𝐶(𝑋,𝑌) =
∑ (𝑋𝑖 − 𝑋�)(𝑌𝑖 − 𝑌�)𝑁
𝑖=1

�∑ (𝑋𝑖 − 𝑋�)2(𝑌𝑖 − 𝑌�)2𝑁
𝑖=1

                                               (4.6) 

The calculation is done at a given time of the order of 105 . Increasing the 

observation time leads to the saturation of correlation. The symbols 𝑋𝑖 and 𝑌𝑖 denote the 

membrane potentials of the neurons of the network 𝑆 and network 𝑃, respectively. The 
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sum runs from 𝑖 = 1 to 𝑖 = 𝑁, where 𝑁 is the total number of neurons of each network, 

and the result is virtually independent of the order adopted to identify the neurons. The 

symbols 𝑋� and 𝑌� denote the mean trajectory of networks 𝑆 and 𝑃, respectively. To study 

the transmission of information from 𝑃 to 𝑆, the adoption of mutual information seems to 

be appropriate. Thus, we also study the mutual information that reads as [56] 

𝑀𝐼(𝑋,𝑌) = � �𝑃(𝑋𝑖,𝑌𝑖)
𝑌𝑖𝜖𝑃𝑋𝑖𝜖𝑆

𝑙𝑜 𝑔 �
𝑃(𝑋𝑖,𝑌𝑖)
𝑃(𝑋𝑖)𝑃(𝑌𝑖)

�                                      (4.7) 

Here, 𝑃(𝑋𝑖,𝑌𝑖)  is the joint probability of finding 𝑋𝑖 = 𝑥  and 𝑌𝑖 = 𝑦  at the same 

time. The numerical results are shown in Fig. 4.12. We see from the figure that 

correlation and mutual information reach their maximal value at 𝐾𝐶 = 0.0018, thereby 

leading us to conclude that this is the critical value of the control parameter 𝐾. We must 

point out that the crucial result of Fig. 4.12 depends on the adoption of the following 

initial state: when network 𝑆 is coupled to network  𝑃, which is already in the cooperative 

regime corresponding to 𝐾, all the neurons of network 𝑆 are in the resting state.  

 
Fig. 4.12. Transmission of information from network 𝑃 to network 𝑆. Correlation and 
mutual information are evaluated using Eq. 4.5 and Eq. 4.6, respectively. In both cases, 
the maximum is observed at criticality supporting the value suggested by Eq. 4.1. 

 

a b 
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If the neurons of 𝑆 are randomly distributed, the results become statistically less 

reliable, and show a shift of the maximum towards 𝐾 = 0.0032. The lack of accuracy 

prevents us from discussing this condition more. We limit ourselves to noticing that the 

choice of the initial condition generating Fig. 4.12 may be appropriate to studying the 

transmission of information. Hence, the condition with all the neurons in the resting state 

implies that the system is able to adapt itself to the directions of system 𝑃.  

 

4.6 Self-Organized Criticality 

 Self-organized criticality (SOC) is a property of dynamical systems that moves 

the system toward a self-organized mode at criticality [6]. This behavior is characterized 

by a scale-free spatial and /or temporal distribution at criticality without the need to tune 

control parameters to precise values. 6 

The paradigm used to define the SOC is the sandpile model. In this model, sand 

grains are added to a pile. When additional grains are added randomly, inevitably, the 

slope’s local steepness surpasses a certain critical threshold, thus causing a local 

failure of structural stability. The excess of grains will cascade into neighboring areas of 

the pile, causing their failures as well. This will cause an avalanche, changing the 

unstable state of the sand pile into a new, stable state. Here, the important process is 

propagation of the local random event quickly through the entire system, thus 

establishing long-range correlations within the system. 

In 2003, Plenz and Beggs observed for the first time that the distribution of 

avalanche size and duration display scale-free distribution [8]. They used a living neural 

6This property was introduced by Per. Bak, Chao Tang and Kurt Wiesenfeld ("BTW") in a paper published 
in 1987 in Physical Review Letters [6].  
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network on the Microelectrodes array and recorded Local Field Potentials (LFP).7 Their 

experimental results showed that at criticality, the avalanche size distribution follows an 

inverse power law of 1.5, and avalanche time duration follows an inverse power law of 2 

as theorized by Zapperi et.al. [57] using the branching process. In a portion of their 

experiment, they added bicuculline to the neural network to make it totally excitatory. 

Despite their expectation that the systems would display smaller scaling of power law 

index and bigger avalanches, they observed that the scale-free distribution was 

destroyed. Based on their results, they concluded that the brain as a complex system 

works near criticality with the hallmark of 1.5 for avalanche size distribution. After they 

published their results, many other papers were published to confirm those results, 

while few contradicted them. 

Hence, it is interesting to know if the neural networks of this research follow this 

widely shared conviction. To accomplish this, we use the same numerical treatment as 

that of Ref.[8] to evaluate avalanches. We consider a time distance of length Δ𝑡 = 5 

during which two spikes lie into one avalanche. The results not shown here indicate that 

the choice of Δ𝑡 changes the results. However, we observed that upon an increment 

of 𝐾, power law indexes of the avalanche probability densities would not change with 

further increasing of the time step. Therefore, for our numerical calculations we rest on 

the assumption that Δ𝑡 = 5. The results on avalanche size distribution and time duration 

are shown in Fig. 4.13.  

7 Local Field Potential is a type of electrophysiological signal dominated by the electrical currents of the 
nearby synaptic activity within a volume of a tissue. 
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Fig. 4.13. Illustration of avalanche size distribution(a), avalanche time duration (b). The 
arrow on black curve of each Panel indicates the crucial inverse power law index of 
each distribution. The red curve in both panels corresponds to the criticality that does 
not coincide with the black curve. 

 

We see that the crucial power index of avalanche size distribution, 𝜈 = 1.5, and 

the crucial index of avalanche time duration, 𝑣 = 2, appears at 𝐾 = 0.0032. This value of 

cooperation parameter is much larger than the value of criticality predicted by Eq. 4.1. 

On the basis of these results, we are led to conclude that the neural system under study 

does not fit the SOC predictions that the power law behavior of avalanche size and time 

duration distributions are a manifestation of criticality. 

This contradiction is due to the fact that there is no theory connecting the 

criticality and inverse power law index and also that SOC in vivo requires sub sampling 

while SOC theories assume full sampling [58]. It is important to point out that the 

existence of power law does not prove that the system is at criticality, since also non-

critical systems may produce power laws [59-60]. 

However, we found the results of Ref.[23], very similar to our finding on regular 

lattice. Their close examination of the avalanche scales—using rigorous statistical 
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analysis, from multi-electrode ensemble recording in cat, monkey, and human cerebral 

cortices, during both wakefulness and sleep—did not confirm power-law scaling of 

neural avalanches of Ref.[8]. These results apparently contradict the hypothesis that the 

brain works at criticality, if the inverse power law of the avalanche size distribution is 

assumed to be a fair criticality indicator. 

 Therefore, we are led to conclude that in regular lattice under study, these 

avalanches are rather a manifestation of supercriticality and correspond to the epileptic 

condition. The healthy brain is signaled by temporal complexity defined by the ML 

function. 
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CHAPTER 5  

COOPERATION IN NEURAL NETWORK: BRIDGING COMPLEXITY AND 

PERIODICITY 

Inverse power law distributions are generally interpreted as a manifestation of 

complexity, and waiting time distributions with power index 𝜇 <  2 reflect the occurrence 

of ergodicity-breaking renewal events. In this chapter, we show how to combine these 

properties with the apparently foreign clocklike nature of biological processes. 

Increasing the density of neuron firings reduces the influence of periodicity, thus 

creating a cooperation-induced renewal condition that is distinctly non-Poissonian. 

 

5.1 Temporal Complexity 

As pointed out in the previous chapter, it is necessary to activate the noise 𝜉 (𝑡) 

[61] to generate temporal complexity. Temporal complexity is compatible with the 

quasiperiodicity of the single-neuron dynamics. If noise intensity is conveniently small, 

the time spent by one neuron to move from rest to the threshold potential remains close 

to 𝑇𝑀𝑆  of Eq. 3.3. Although this condition is ensured by setting  𝜎 < √𝛾, making the 

mean time distance between two consecutive firings of the same neuron very close to 

𝑇𝑀𝑆, in the absence of cooperation, periodicity is totally lost. This is a consequence of 

the noise action. For very low values of 𝐾,  the dynamics of the whole system are 

determined by the uncorrelated motion of many units, with the time scale 𝑇𝑀𝑆. Due to 

the lack of correlation, the time distance between two consecutive firings of a set of 𝑁 

neurons is given by Eq. 3.17 with 〈𝜏〉 = 𝑇𝑀𝑆. As a consequence, the survival probability 

Ψ(𝑡) namely, the probability that no firing occurs up to the time 𝑡 from an earlier firing, is 

44 



given by Eq. 3.18 which is the typical form of Poisson dynamics. According to the 

conviction of Ref.[62] that cooperation generates scale invariance, one would expect as 

an effect of increasing 𝐾 a transition from the exponential form of Eq. 3.18 to 

𝛹𝐶(𝑡) = �
𝑇𝐶

𝑇𝐶 + 𝑡
�
𝛼

                                                           (5.1) 

Where 𝛼 ≡ 𝜇 − 1  with 𝑇𝑀𝑆 so small as to make Eq. 5.1 virtually equivalent to the inverse 

power law of Eq. 2.1 over the available time scale (This is Eq. 2.8 that is reiterated for 

the sake of index reference; C refers to complexity). As shown by Fig. 5.1, we find 

instead that for small values of 𝑁, the survival probability is identical to the Mittag-Leffler 

(ML) function [24,46,63] 

Ψ(𝑡) =  𝐸𝛼[(−𝜆𝛼𝑡)𝛼]                                                          (5.2) 

if we neglect the periodicity-induced long-time truncation.  

As explained by the authors of Ref.[24], the ML function plays an important role 

in the field of complexity because it settles the controversy between the advocates of 

stretched exponential functions and the advocates of inverse power law as important 

signatures of complexity. In fact, in the time region 𝑡 < 1/𝜆𝛼 the ML survival probability 

is described by the stretched exponential function 

Ψ(𝑡) ∝ 𝑒𝑥𝑝[(−𝜆𝛼𝑡)𝛼]                                                          (5.3) 

and in the large time region 𝑡 > 1/𝜆𝛼 by  

Ψ(𝑡) ∝
1
𝑡𝛼

                                                                           (5.4) 

The cooperation-induced emergence of the ML function matches the expectation that 

cooperation generates scale invariance. In fact, the index 𝛼 of the stretched exponential 

function of Eq. 5.3 is identical to the power index 𝛼 of the inverse power law of Eq. 5.4. 
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On top of that we show that the ML function of Eq. 5.2 is the visible manifestation of a 

hidden survival probability with the inverse power law form of Eq. 5.1, which is thought 

to be a signature of complexity [62].  

To prove this important fact, we notice that as an effect of cooperation neurons 

tend to fire at the same time [43,46], thereby making the distance between two 

consecutive firings become larger than 1/𝐺 and the intensity of each firing larger than 

the intensity of a single firing.  

As a consequence of the fact that the neural network has a finite number of units, 

𝑁, some of these multiple firings cannot be realized, or, let us say, they are not visible. If 

we increase 𝑁 while leaving 𝑇𝑀𝑆  constant, thereby increasing the density of neuron 

firings, all the cooperation-induced multiple firings are realized and are visible, and they 

are expected to generate a complex survival probability 𝛹𝐶(𝑡). Note that this form of 

temporal complexity yields the ergodicity breaking of Refs.[64-65] when 𝛼 <  1 . 

However, for 𝑁 small, many firings are not realized. Let us denote by 𝑃𝑆 the probability 

that a multiple firing occurs. Decreasing 𝑁 makes 𝑃𝑆  decrease so that 𝛹𝐶(𝑡), as was 

explained in Chap.2 and shown in Ref.[46], is replaced by the much slower survival 

probability of Eq. 5.2 with 𝜆𝑆 satisfying Eq. 2.9 which means that with 𝑃𝑆 → 0, Ψ(𝑡) does 

not decay, signaling that no event occurs. 

In the ideal case of perfect synchronization studied by Mirollo and Strogatz [35] 

the system produces a sequence of firings at times 𝑛𝑇𝑀𝑆, with 𝑛 =  1,2, .. with intensity 

equal to 𝑁. When 𝐾 =  0, 𝑁 firings of minimal intensity, with only one neuron firing, are 

homogeneously distributed in the time region between (𝑛 − 1)𝑇𝑀𝑆  and 𝑛𝑇𝑀𝑆 . For 

intermediate values of 𝐾 the density of firings in these time intervals decreases, and if 
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one of these time intervals is empty, with firings of intensity 𝑁 at both extremes, it will 

contribute a peak of the waiting time distribution 𝜓(𝑡) at 𝑡 ≈  𝑇𝑀𝑆. The intensity of this 

peak is proportional to the number of empty time intervals of length 𝑇𝑀𝑆 . 

Actually, as a consequence of working with 𝜎 >  0, the time length of the largest 

empty time intervals will be smaller than 𝑇𝑀𝑆 , but these peaks will still perceive the 

system’s periodicity. If the survival probability Ψ(𝑡) virtually vanishes at 𝑡 ≪ 𝑇𝑀𝑆, as in 

the high-density case, generating the survival probability of Eq. 5.1 with 𝑇𝐶 ≪  𝑇𝑀𝑆 , the 

influence of periodicity is not perceived, and the intensity of the truncation peaks should 

be minimal.  

Fig. 5.1 fully supports these theoretical arguments shows that lower density 

yields a slow and heavy tail the ML survival probability. The fast drop in the long-time 

region close to 𝑇𝑀𝑆 is due to the high sensitivity to periodicity. It is important to notice 

that the ML function revealed by the numerical analysis of this article exactly matches 

the ATA results [43]. This is strong evidence that cooperation generates long-range 

interactions, thereby making the local-interaction network identical to the ATA network, 

if a larger 𝐾 is adopted: Cooperation-induced criticality breaks the local nature of the 

model [66]. 

The corresponding low-density (𝑁 = 100) waiting time distribution Fig. 5.2 shows 

a large peak at 𝑡 ≈  𝑇𝑀𝑆 , while the high-density one (𝑁 = 2500)  shows no sign of 

truncation peak, in agreement with the earlier theoretical arguments. For illustrative 

purposes we have also plotted the perfect synchronization case of 𝐾 = 0.1 . It is 

important to stress that the power law regime of the survival probability of the high-

density case is too limited to allow us to use a reliable fitting procedure to find a power 
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index. Line (b) is a guideline obtained by shifting down the fitting line (a) with the power 

index of α = 0.75. 

 
Fig. 5.1. Survival probability of the system with size of 𝑁 = 100 (black curve) for 𝐾 =
0.0018 and 𝐾 = 0 (gray curve), survival probability of the system with size of 𝑁 = 2500 
(green curve). The dashed line (a) shows the power law fit, the dotted line (b) shows the 
exponential fit and the dotted dashed line (c) represents the fitting line parallel to (a). 
 

 
Fig. 5.2. Waiting time distribution for system of finite size (black curve) and the system 
of infinite size (green curve). The giant peak around the period of the system shows the 
high resolution of the event with the probability that is not obvious in the high density 
case. 
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 The reasons of the drop of this power law are not clear. They may be due to 

random fluctuations influencing the extended transition time regime from. The transition 

time is not affected by periodicity as clearly proved by the aging experiment (see Fig. 

5.2), ensuring that the process is still renewal. 

 

5.2 Cooperation-Induced Renewal Breaking 

Let us now address another key issue called the periodicity-induced renewal 

breaking. The model of this research (namely Eq. 3.1; called integrate-and-fire model) in 

the absence of stimuli is renewal, since after firing a neuron does not have any memory 

of the earlier paths. However, under the presence of a harmonic stimulus it may lose its 

renewal properties [67,68]. The model of this paper, the cooperative LIFM, can be 

turned into a nonrenewal process without external stimuli, due to the new phenomenon 

of cooperation induced renewal breaking.  

To detect the renewal breaking and to measure its intensity, we adopt the aging 

experiment explained in section 4.5. It was shown that, if shuffled and unshuffled 

distributions coincide, the process is renewal. Otherwise the process is non-renewal. 

Therein, the aging experiment was used to confirm the criticality; we used the age of 

𝑡𝑎 = 1000 for the system at criticality. There is also a range of values that show the 

renewal property even a little above the criticality. It was also shown in Fig. 4.7 that in 

the region II, the system is contaminated by periodicity. 

 Hence, in order to show the cooperation-induced renewal breaking, we focus on 

the value that falls in where is the region that the system is contaminated by periodicity 

with 𝐾𝐶 > 𝐾 = 0.002. Using the aging experiment, we gain the central results of Fig. 5.3. 
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The age is chosen to be 𝑡𝑎 = 3000 since the system starts truncation around this time 

for the low intensity, 𝑁 = 100 . We see that the shuffled and the original sequence 

undergo the same aging effect in the time region 𝑡 < 𝑇𝑀𝑆, whereas in the remaining 

wide time region, the aging of the shuffled sequence departs significantly from that of 

the original sequence. This is a clear effect of renewal-breaking periodicity. 

 The events of the short time region are renewable and unpredictable, whereas in 

the latter time region they may be predictable. Of course, when 𝐾 is very large, as when 

it generates the perfect synchronization, the whole process becomes perfectly 

predictable. Now, we shift to the case of high density, 𝑁 = 2500. In this case the system 

is not sensitive to periodicity. Using the aging experiment, we gain the results shown in 

insert of Fig. 5.3.  

As can be seen in this figure, there is aging, and a strong departure from the 

Poisson condition, while the virtually perfect coincidence between the results of shuffled 

and unshuffled procedures proves that the process is renewal. In this ideal case of 

ordinary complexity, the avalanches are totally unpredictable.  

These results help shed light on the predictability of events at the time of crisis 

[67]. It is clear that the predictability would be explained knowing the density of units or 

events in the system. As was shown, if the system truncates at the time very close to 

the period of the system, signaling periodicity; it would be easier to imagine the 

possibility of prediction in the system. However, in the case of large density, the 

probability distribution of events would not truncate at the system’s natural time, but 

much earlier as to make it very insensitive to the periodicity. 
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5.3 Neural Avalanches 

 We note that the results of Fig. 5.1 do not afford any direct information on the 

quake intensity. To discuss this problem, we study the distribution of avalanche sizes for 

different values of 𝑁. Avalanches are a well-known property of neural networks and as 

was shown in Chap.4 the neural network of this research generates avalanche 

distribution with power index of 1.5 for the avalanche size and 2 for the avalanche 

duration matching the experimental observation of Ref.[8]. 

 
Fig. 5.3. Cooperation-induced renewal breaking of the low intensity case, 𝑁 = 100 and 
𝐾 = 0.002. In the short time regime the process is renewable and unpredictable, while in 
the long time it is non-renewable and predictable. Insert: Cooperation-induced renewal 
breaking of the high intensity case, 𝑁 = 2500 and 𝐾 = 0.002. The coincidence of 
shuffled and un-shuffled distribution indicates that the process is totally renewable and 
unpredictable.  
 

Here, we focus on the size distribution. Fig. 5.4 shows that the distribution 

density of avalanche sizes for a suitably large value of 𝐾 = 0.013 is characterized by a 

bump, and this bump increases with decreasing 𝑁, a property shared also by the model 

𝑻𝑴𝑺  
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used by de Arcangelis [70]. The truncation peak corresponds to the ideal 

synchronization of Mirollo and Strogatz [35], namely, to an avalanche of maximal 

intensity 𝑁. Setting 𝜎 =  0 prevents small avalanches to unfold, a limiting condition of 

periodicity with no temporal complexity, which according to the inset of Fig. 5.4 extends 

to a small range of 𝜎 values. Gigantic avalanches of size 𝑁 may coexist with temporal 

complexity and with the experimental power law distribution of index 𝜐 =  1.5, and the 

fraction of avalanches of maximal intensity emerging from a power law background 

becomes larger with decreasing the neuron density, due to the close connection 

between sensitivity to avalanches and the heavy tails of Ψ(𝑡). 

 
Fig. 5.4. Avalanche size distribution for 𝑁 =  100 (black curve), 𝑁 =  400 (red curve), 
and 𝑁 =  900 (green curve). In all three cases 𝜎 =  0.0001 and 𝐾 =  0.013. Data are 
log-binned. Insert: Fraction of the number of the avalanches of intensity 𝑁 to the total 
number of avalanches, as a function of 𝜎. 
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5.4 Summary 

The results of this chapter shed light into the coexistence of periodicity and 

complexity. In spite of the fact that each neuron interacts only with four nearest 

neighbors, suitably large values of 𝐾  make this model recover the perfect 

synchronization of Ref.[35]. However, an extended regime exists between the weak-

coupling regime, where the units of the system are independent of each other, and the 

perfect synchronization regime. In this intermediate regime, periodicity and complexity 

coexist.  

This may contribute to the foundation of a theory for the occurrence of Dragon 

Kings proposed by Sornette, a new phenomenon that is currently the object of a 

vigorous debate [71-72]. The Dragon Kings are anomalous events emerging from a 

power law background. This paper establishes a connection between the existence of 

Dragon Kings and the apparently conflicting coexistence of renewal and nonrenewal 

properties in the same complex model. Interpreting the Dragon Kings as outliers [72] 

generates the impression that they are foreign to the cooperation-induced locality 

breaking from which temporal complexity emerges. We make the conjecture that the 

peaks emerging at the maximum value of avalanche size distribution 𝑁 coinciding with 

the total number of neurons are the Dragon Kings of Refs.[71-72]. If this interpretation is 

correct, the Dragon Kings would be a manifestation of the same cooperation-induced 

long-range correlation as that proved to be essential for the function of complex 

systems [66]. 

Last but not least, the results obtained here may be general. The adoption of a 

regular two-dimensional network has been decided as the simplest way to assign to 
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each neuron the same number of links. On the basis of the results of the recent work of 

Ref.[73] we make the plausible conjecture that the adoption of different network 

topologies generates temporal complexity, locality breakdown, and perfect 

synchronization upon changing the values of 𝐾 . There may be scale-free networks 

where all the results of this paper are recovered at lower values of 𝐾.  

In fact, the work of Ref.[73] shows that the cooperative system generates 

dynamical links with a scale-free structure that has the important effect of facilitating the 

transition from the Poisson condition to the criticality-induced long-range correlation 

regime. However, while the cooperative model used in Ref.[73] is Ising-like, and is 

renewal for both low and high values of the cooperation parameter [50], by contrast, the 

model of this research shows a transition from the renewal condition (at the emergence 

of criticality) to a predictable nonrenewal coherent regime as the cooperation 

parameter 𝐾 increases as was shown in Chap.4.  

  

54 



CHAPTER 6  

TWO SOURCES OF POWER LAW TRUNCATION 

In this chapter, two distinct sources of power law truncation of the ML function 

are presented. To the best of our knowledge, there is still no map that generates the ML 

function. However, we use the power law truncation of survival probability generated by 

Pomeau-Manneville as a map to support the numerical results of this chapter. 

 

6.1 Power Law Truncation 

In Chap.4, a fitting procedure was used by applying a Laplace transformation on 

survival probability. In this procedure, fitting parameters, 𝛼  and 𝜆 , were found 

numerically. The behavior of survival probability was interpreted as the ML function that 

shows a stretched exponential at short time regime and inverse power law at long time 

regime.  

The ML function may be generated by calculating cumulative probability on the 

time series generated by the algorithm [74] 

𝜏 =
1
𝜆
𝑙𝑛 �

1
𝑢
� �

sin (𝛼𝜋)
tan (𝛼𝜋𝜐)

− cos (𝛼𝜋)�
1/𝛼

                                     (6.1) 

Where 𝑢, 𝑣 ∈ (0,1) are independent uniform random numbers, 𝜆 is the scale parameter, 

and 𝜏 is a Mittag-Leffler random number. There is also another algorithm that generates 

the ML function directly for given 𝛼 and 𝜆 [51].  
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Fig. 6.1. Comparison of the ML function emerging from neural system with theoretical 
ML function generated by algorithm of [51].  
 

To validate the accuracy of the numerical fitting procedure used in Chap.4, we 

take the fitting parameters gained from the numerical procedure and run the two 

algorithms mentioned above. Then, we compare the survival probability of the numerical 

ML function with theoretical equivalent (Fig. 6.1). We found a clear discrepancy in the 

tail of the ML function for 𝛼 < 1 where cooperation is large enough to make the process 

first complex and then periodic (See also Fig. 4.5). 

Moreover, we showed that three regimes characterize the order parameter as is 

shown in Fig. 4.7. In region I, the power law index remains around 1; namely 𝛼 ≈ 1, and 

the process is a Poisson process, in region II, 𝛼 < 1, although this region is not fully 

contaminated by periodicity. However, periodicity is fully perceived in region III. Hence, 

based on this classification and also the previous study of Refs.[75-76], we presume 

that the source of truncation in region I and II is fluctuations while in region III, truncation 
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is due to periodicity. We refer to these truncation sources as noise- and periodicity-

induced tail truncations. In the following sections, we explain in more detail. 

 

6.2 Noise-Induced Tail Truncation 

 To address the noise-induced trail truncation, it is essential to study the 

fluctuations effect on the survival probability distribution analytically and numerically. For 

analytical study, after searching in the literature, we are confident that a map that 

generates the ML function is not yet found. It would be useful to use the theoretical 

perspective adopted by our group in an earlier study to investigate the noise-induced tail 

truncation. 

Therefore, an explanation of the method used by the authors of Refs.[75-76] is 

inevitable. These authors have studied the environmental fluctuations in their model 

using a perturbation of the Pomeau-Manneville map [74].8 The focus is only on the long-

time limit characterized by the inverse power law property 

𝑥𝑡+1 =  𝑇(𝑥𝑡) =  𝑥𝑡 +  𝑥𝑡
1+1𝛼,𝑚𝑜𝑑 1                                           (6.2) 

It is possible to make this discrete-time map compatible with a continuous time 

description  

𝑑𝑥
𝑑𝑡

=  𝑎0𝑥(𝑡)1+
1
𝛼                                                                            (6.3) 

Its solution for a trajectory moving from the initial condition 𝑥0 = 𝜐 reads as 

𝑥(𝑡) =  
𝑣

�1 − 𝑎0𝑣
1 𝛼� 𝑡
𝛼

�
𝛼                                                          (6.4) 

8 This map also generates a form of complexity signaling a power law. 
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When the trajectory 𝑥(𝑡) reaches the threshold 𝑥 = 1, it resets to its initial condition 

𝑥0 = 𝜐 as is selected with uniform probability in the interval  0 < 𝜐 < 1. If 𝜏 is the time 

necessary to move from the initial condition 𝑥 =  𝜐 to  𝑥 = 1, using Eq. 6.4, we arrived at 

𝜏 =
𝛼
𝑎0
�

1
𝜐1/𝛼 − 1�                                                            (6.5) 

Similar to the algorithm of Eq. 6.1, this equation generates a time series. This algorithm 

allows us to address the noise-induced tail truncation. Since a map of the same kind as 

that of Eq. 6.2 — a map that generates the ML function —is not yet known, the 

comparison of Eq. 6.5 with Eq. 6.1 suggests a plausible way to understand cooperation-

induced processes. In the limiting case of 𝑣 → 0, both prescriptions yield 

𝜏 ∝ 𝑇(𝑢) �
1
𝜈
�
1/𝛼

                                                                      (6.6) 

With 𝑇(𝑢) = 𝛼/𝛼0 and 𝑇(𝑢) = (1/𝜆) 𝑙𝑛 in the case of Eq. 6.4 and Eq. 5.1 respectively.  

The Pomeau-Manneville map seems to be appropriate for the inverse power law 

appearing at large times while for the ML complexity, as suggested by Eq. 6.1, we 

should use a two-dimensional map that is not yet known. However, to account for the 

noise-induced power law truncation, we have to apply to this still unknown two-

dimensional map the same arguments as those adopted by authors of Refs.[75,76] on 

the Pomeau-Manneville map.  

We assume that, at criticality, a system with a finite number of units obeys the 

modified Pomeau-Manneville map 

𝑡𝑙+1 = 𝑥𝑡 + 𝑥𝑡
1+1𝛼 + 𝑓𝑡,   𝑚𝑜𝑑 1                                                           (6.7) 

Here, 𝑓𝑡  is a random noise of intensity 𝐷 . The authors of Ref.[74] prove that an 

extremely small intensity 𝐷 ∝  10−13 may produce a truncation at ∝ 104. The power law 

58 



truncation is due to the deterministic dynamics for 𝜈 very close to zero. The power law 

may be extremely slow and even slower than the diffusion process generated by the 

random fluctuation 𝑓𝑡. 9 

In practice, this is equivalent to assuming that the initial condition with 𝜐 < 𝜖 ≪ 1 

is not allowed and that the effective initial condition is 𝜖 . The algorithm of Ref.[75] 

suggests that the ML function may derive from the deterministic prescription of a two-

dimensional map. Thus, in this case, the noise-induced tail truncation depends on the 

fact that entering regions 𝜈 < 𝜖𝜈 < 1 and 𝑢 < 𝜖𝑢 < 1 for initial conditions are not allowed. 

The quantities 𝜖𝜈 and 𝜖𝜈 are proportional to the noise intensity, and for simplicity, we 

refer to them as noise strengths. 

We ran the neural model of this research for 𝐾 = 0.001. According to Fig. 4.2, 

this value of the cooperation strength corresponds to the region where the power law 

tail is not yet visible and the survival probability is still a stretched exponential function. 

The Laplace fitting procedure was executed to determine 𝛼  and 𝜆 . Using the noise 

strength 𝜖𝜈 = 𝜖𝑢 = 0.03 , we ran the algorithm of Ref.[74]. The choice of the noise 

intensity is based on numerical observations. After assessing the noise intensity to 

evaluate the tail truncation at 𝐾 = 0.001, we study the condition 𝐾 = 0.0018. This value 

of cooperation parameter corresponds to criticality according to Eq. 4.1. Repeating the 

same procedure on 𝐾 = 0.0018, we see that the power law tail becomes visible, in a 

good agreement with the numerical results. This is because if the power index is 

reduced, a fluctuation with the same intensity generates a truncation at larger time 

regimes, according to Eq. 6.6. 

9 Diffusion processes are continuous-time, continuous state-space processes and their sample paths are 
everywhere continuous but nowhere differentiable. 
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The interpretation of these results is as follows: at 𝐾 = 0.001 the system begins 

its transition to the cooperation regime with 𝛼 = 0.95. The fluctuations make the ML tail 

invisible. Upon increasing the cooperation parameter from 𝐾 = 0.001 to 𝐾 = 0.0018, the 

ML tail becomes visible, as is seen from Fig. 6.2. The internal noise is not strong 

enough to annihilate the ML power tail. This source of truncation ought not to be 

confused with the periodicity-induced truncation, which is signaled by the vertical arrows 

of both Panels, corresponding to the prediction of Eq. 3.3. The noise-induced tail 

truncation occurs earlier than the periodicity-induced tail truncation with increment of 

coupling strength,  𝐾. 

 
Fig. 6.2. Noise-induced tail truncation. 𝐾 = 0.001 (a), 𝐾 = 0.0018 (b). In both cases, the 
process is affected by fluctuations. 

 

 

6.3 Periodicity-Induced Tail Truncation  

As was explained in Chap.3, the model of this manuscript is a modified version of 

the Mirollo-Strogatz model in which all neurons fire at the same time. In their study, 

Mirollo and Strogatz used an ATA network, while here we studied regular lattice 

showing the same properties at those of ATA [43], with tuning the control parameter as 
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the result of network topology. As was discussed in Chap.4, the increment of 

cooperation parameter in the system, leads to temporal complexity. At temporal 

complexity, system acts as an ATA network; namely, all neurons get connected, and we 

are led to conclude that the cooperation results in locality breakdown.  

In fact, criticality is the onset of the locality breakdown that becomes more 

evident when the coupling is larger. If the cooperation is large enough, it puts the 

system in the supercritical regime denoted as region III, where the system reaches the 

perfect synchronization.  

As is seen from Fig. 6.3, the truncation time of the survival probability follows Eq. 

3.3—herein 𝑇𝑀𝑆 ≈ 5300— for a value of 𝐾  larger than 𝐾𝐶  and higher. The value of 

cooperation is large enough to make the system fully cooperative. Neurons do not fire 

up to 𝑇𝑀𝑆 ≈ 5300 and finally they all fire at the same time, interpreted as the perfect 

synchronization. This explanation supports the claim that region III of Fig. 4.7 is 

dominated by periodicity. It is not yet clear what kind of function may define the behavior 

of survival probability distributions in the periodic regime. Future theoretical study on 

this process may help shed light on this ambiguity. 

Overall, based on the explanations given, we confirmed the division of system 

dynamics into three categories: subcritical, critical, and supercritical. In the first two 

regimes, the tail truncation, occurs as the result of fluctuations and is called noise-

induced tail truncation, while in the supercritical regime, the system falls into periodicity 

and its tail truncation is called periodicity-induced tail truncation. An advantage of this 

system classification is the predictability of events. When the system is affected by a 

periodic behavior, it is easy to predict the occurrence of events in the future. However, 
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event forecasting in the fluctuating regimes, as of region I and II of this model, is 

unlikely, as was shown by means of the aging experiment in Chap.4 

 
Fig. 6.3. Periodicity-induced tail truncation. Two curves lay into the region dominated by 
periodicity. 𝐾 = 0.0032 is where system signals avalanche distribution in size of 1.5  
confirming our conclusion in Chap.4 on the epileptic behavior of the neural network in 
that region. 
  

62 



CHAPTER 7  

COOPERATION-INDUCED TOPOLOGICAL COMPLEXITY 

In this chapter, network organizational dynamics is discussed. We focus our 

attention on the criticality where the information transfer is maximal, and the network 

has the highest efficiency. Dynamical observation of the network topology shows that 

degree distribution follows a power law distribution. It is proved that the newly generated 

topology is more efficient than an ad-hoc network. 

 

7.1 Network Topological Evolution  

The effort to find a rigorous measure of network efficiency is one of the main 

problems of network science [78]. Network vulnerability may not be addressed without a 

measure of global efficiency. Network efficiency was originally studied in connection 

with topological structure [78]. Recently, researchers have discussed the connection 

between synchronization and topology [79]. 

It was shown that criticality is where the system shows long-range correlation 

and synchronization. This effect makes the system equivalent to a fully cooperative 

system regardless of the resting network that it starts with. 10  Hence, the network 

properties have a close connection with topological structures that emerge at each level 

of evolution.  

On the hand, it was discussed in Chap.4 that criticality is where the system has 

maximal functionality such as information transfer due to long-range correlation. We 

also found a critical point that does not display the crucial power law index of 1.5 for 

10 Resting network is the regular lattice prior to the activation of cooperation. When the network evolves in 
time, it shows structural properties different from the network at rest. 
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avalanche size distribution; contradicting the widely shared conviction of criticality and 

SOC hallmark. Therefore, studying the organizational properties of the neural network 

may confirm the critical vale found in this research. 

Herein, we study the connection between network topology and cooperation 

parameter. Two different networks are introduced: a resting and a dynamic network; the 

former is the network that units are at rest; namely in the absence of cooperation and 

the latter is the network generated by the self-organization of the units located on the 

structure of the resting network. We argue that these results establish a connection 

between criticality and the famous Donald Hebb’s Neurophysiological postulate [80]. 

 

7.2 Cooperation-Induced Network Topology 

 To study the network topology, we consider the neural dynamics of the present 

study at criticality according to Eq. 4.1 (𝐾 = 0.0018). After initial 105  time steps, we 

record lattice configuration over 105  time step windows, registering the dynamics of 

each node {𝑥𝑖(𝑡)} over that time interval. In the next step we evaluate the linear 

correlation coefficient between the 𝑖-th and the 𝑗-th node [81] 

𝐶(𝑖, 𝑗) =
〈𝑥𝑖(𝑡)𝑥𝑗(𝑡)〉 − 〈𝑥𝑖(𝑡)〉〈𝑥𝑗(𝑡)〉

�〈𝑥𝑖2(𝑡)〉 − 〈𝑥𝑖(𝑡)〉2�〈𝑥𝑗2(𝑡)〉 − 〈𝑥𝑗(𝑡)〉2
                          (7.1) 

Where 〈… 〉 denotes the time average. If the correlation intensity between nodes 𝑖 and 𝑗 

of the square lattice is larger than threshold value Θ = 0.78 , we consider them 

connected by a link in the dynamically induced topology.  

 Herein, there are two questions that a reader might ask. i) why we consider the 

network at criticality and ii) how to define the threshold since newly created topology 
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depends on selected value of the threshold applied to the set of obtained correlation 

coefficients.  

Regarding to the first question, we know that in the subcritical regime, 

randomness dominates the cooperation between units and correlation between nodes is 

almost zero. In the supercritical regime also the periodicity dominates the cooperative 

behavior while the correlation between units vanishes. However, in the critical regime, 

the coupling between units is just enough to balance the stochasticity. This condition 

leads to dynamical coupling between units that are not directly connected and results in 

wider distribution of values of 𝐶 (𝑖, 𝑗) than in two previous cases. 

The next question to be addressed is the value of threshold chosen as Θ = 0.75. 

Considering the network at criticality, adoption of a low threshold would result into the 

highly correlated nodes and make all nodes connected to each other. As the threshold 

Θ increases, less pairs would be included in the newly created topology. The increase of 

threshold leads to the destruction of a giant cluster of links. Thus no new structure can 

be identified. Close to the selected threshold, the transition between the fully connected 

structure obtained for low threshold and its destruction into separate modules is more 

subtle. Fig. 7.2 depicts this explanation visually. The clustering coefficient is calculated 

using [82] 

𝐶̅ =
1
𝑁
�𝐶𝑖

𝑁

𝑖=1

                                                                           (7.2) 

Where  

𝐶𝑖 =
3 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑙𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

                                                   (7.3) 

and 𝑁 is the total number of units.  
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Fig. 7.1. Clustering in the network decreases with increasing threshold. The value 
suggested by the figure is around 0.78 as is used to study the network evolution. 
 

After choosing the threshold and the value of cooperation parameter, we assess 

the correlation coefficient. In more detail; after taking time windows of 105 , the 

correlation between all pairs �𝑥𝑖, 𝑥𝑗� is calculated which results in a matrix of values 

between 0 and 1 denoted as weight of connection between nodes  𝑤𝑖𝑗. If the correlation 

between two nodes is high; it implies that they have consistently contributed in firing of 

each other through links that at criticality would be independent of their Euclidean 

distance.  

After the threshold, Θ = 0.78, is applied, the connection between two nodes is 

chosen to be 0 or 1 depending on the weight of connections. The resulting matrix is an 

adjacency matrix of the whole network.  Finally the degree distribution of the links in the 

network is driven from adjacency matrix. As seen the degree distribution displays a 

scale-free behavior. This result indicates that the network topology is dynamic and this 

dynamics is stable with scale-free behavior. Fig. 7.2 illustrates the process visually. 
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Fig. 7.2. Illustration of the measurement of degree distribution on the network at 
criticality. Top Panel shows random pairs that the cross correlation is calculated over 
105 time step windows. This process is repeated for all pairs and is shown as 
correlation matrix shown in the second Panel. The weight of connections is ranging 
between zero and 1 shown in different colors. The Third Panel illustrates the matrix of 
connections after applying the threshold. The bottom Panel shows the degree 
distribution calculated for each time window. 
 

In other words, we start with a regular lattice whose degree distribution is a 

Dirac-like distribution. As the result of cooperation, neurons get connected with each 

other regardless of their predefined connections, and the degree distribution follows 
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scale-free distribution (See Fig. 7.3). This scaling implies that there are few nodes in the 

network with large degree; they are linked to many nodes, while there are many nodes 

in the network with small degree; they don’t posses many links. 

 

 

 

 

 
Fig. 7.3. Configuration of the resting network on the right; a node with its four nearest 
neighbors are marked. On the left dynamical network topology; a node gets connected 
as the result of cooperation as is marked in the figure. 
 
 

7.3 Network Efficiency and Learning 

In order to study the efficiency of the newly generated network a new measure of 

network efficiency is used [82]. The authors of Ref.[82] claim that their method is more 

reliable than the traditional method of network efficiency which reads as 

𝐿~ ln(𝑙𝑛𝑁)                                                                     (7.4) 

𝑁 is the number of nodes and efficiency is 𝐸 = 1/𝐿 for power law index of 𝛼 < 3 [83]. 

However this relation applies without no significant dependence on 𝛼. While in [82], the 

method applies to the system of 𝛼 ≈ 2 making it a good candidate to be applied on the 

emergent network at criticality.  

According to this method, the Euclidean distance between each pair of correlated 

nodes is recorded, and the network efficiency as the mean value of this value is defined. 

In particular 
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𝑃 =
1
𝑁

 �𝜆𝑖

𝑁

1

                                                                         (7.5) 

Where 

𝜆𝑖 = �𝑑𝑖𝑗

𝑘𝑖

𝑗=1

                                                               (7.3) 

Here 𝑑𝑖𝑗 is the Euclidean distance between node 𝑖 and node 𝑗 connected to it [83]. 𝑃 is 

defined as perception length. It is expected that at criticality, due to the long-rang 

correlation, the perception length is high; implying to the higher efficiency. 

 In order to compare the efficiency of the newly generated network, we generate 

an ad-hoc network with the same 𝛼 is generated and embedded that in a regular lattice. 

The perception length of each network is calculated. The results in table 1 show that 

created network, emerged from a regular lattice is more efficient that an ad-hoc 

network.   

Table 7.1. Comparison between network efficiency of dynamically generated network 
and ad-hoc network. 

 

Donald H. Hebb states that: “let us assume that the persistence or repetition of a 

reverberatory activity (or "trace") tends to induce lasting cellular changes that add to its 

stability. When an axon of cell A is near enough to excite a cell B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic change takes place 

in one or both cells such that A's efficiency, as one of the cells firing B, is increased.” 

               𝜶           Perception Length, P  

Dynamical Network 1.1                   280.8  

Ad-hoc  Network              1.15       204.4  
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We interpret the results of this chapter in the light of this hypothesis. We found 

that during a finite but long enough time, the regular lattice is transformed into a network 

whose degree distribution follows the power law distribution of 𝛼 ≈ 1. This dynamically 

generated network is consistently changing and the leadership is passed through the 

nodes as the result of equivalent nodes. After many organizations, according to Hebb’s 

postulate, recurring dynamical links are turned into resting links. This may also address 

to the fact that during life, the human brain rewires to make the most efficient scaling. In 

a study of brain network evolution [84], MRI images of babies from 3 weeks to 2 year-

old showed that the temporal and spatial evolution of brain network topology are 

constantly changing. The brain possesses the scale-free topology immediately after 

birth. This topology remarkably improves the efficiency in 1 yr olds and becomes more 

stable in 2 yr olds. This result also reveals that the network organization and 

development continues towards higher order of cognitive function and intelligence [83]. 
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CHAPTER 8  

GENERAL CONCLUSION 

 In this dissertation, a system of neurons that models some behaviors in the brain 

such as spontaneous activities, fluctuations, local, and long-range interactions is 

studied. The neural system of this research is a system of cooperative neurons in a 

regular lattice; each neuron is connected to its four nearest neighbors. Using the leaky 

integrate-and–fire model, the network generates a spiking pattern, with neural 

avalanches in size and duration coinciding with the experimental results both in vivo and 

in vitro. Cooperation is defined as the control parameter of the system. Focusing on 

temporal complexity and fractal index of the system, it is discussed how to define an 

order parameter. Criticality is assumed to correspond to the emergence of temporal 

complexity, interpreted as a manifestation of non-Poisson renewal dynamics. It is shown 

that the system makes a transition from a non-cooperative state to a fully cooperative 

state where complexity emerges in between.  

 As a rigorous proof of criticality, the study of information transfer from one 

network to another show the maximal correlation and mutual information at criticality 

suggested by temporal complexity. Distribution of neural avalanches in size at criticality 

does not display power law scaling of 1.5, contradicting the widely shared conviction 

that has emerged from research on neural networks, while coinciding with the few 

recent experiments on the real brain. 

Moreover, the coexistence of complexity and periodicity as a result of the 

emergence of ML function was revealed supported by analytical and numerical 

calculations. 
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 Studying the network evolution, a cooperation-induced topology is found whose 

degree distribution follows inverse power law scaling. It is discussed that this result may 

be interpreted as the brain development during life toward highest order of cognitive 

behavior. 

 However, there are still issues that remain unanswered. From neurobiological 

point of view one major problem is the lack of inclusion of inhibitory synapses in the 

model. Another is the integration of synaptic depolarization and hyperpolarization over 

the complex morphology of a neuron which here was considered in a single step. From 

Theoretical point of view, the most pressing problem is assessing the connection 

between criticality and self-organization hypothesis. A more rigorous theory on definition 

of temporal complexity and its connection with avalanche size distribution is needed to 

allow exploration in wider ranges of application, and helps to understand the impact of 

each parameter on the observed behavior of the system. Also considering inhibition in 

the neural system would make it more realistic. Despite those obstacles, presented 

work creates a promising foundation for this future research on the brain. 
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APPENDIX A  

SUBORDINATION APPROACH ON SURVIVAL PROBABILITY
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Let us denote by Ψ(𝑡)  the survival probability corresponding to a given  𝑃𝑆 . 

When  𝑃𝑆 = 1 , the survival probability Ψ𝑆(𝑡)  is equal to Ψ𝑆(𝑡) = ∫ 𝜓𝑆∞
𝑡 (𝜏′)𝑑𝜏′ . When 

𝑃𝑆 < 1, we use the subordination theory to find the survival probability 

Ψ(𝑡) = �� 𝜓𝑛
(𝑆)(𝑡′)(1 − 𝑃𝑆)𝑛 Ψ(𝑆)

𝑡

0

∞

𝑛=0

(𝑡 − 𝑡′)𝑑𝑡′                    (𝐴. 1)  

Now, we need to apply the Laplace transformation on Eq. A.1 to determine Ψ� 𝑆(𝑢). In 

order to do the transformation, the analysis on each term in as follows: using the time 

convolution theorem, we can write the  

𝜓𝑛
(𝑆)(𝑡) = � 𝜓𝑛−1

(𝑆) (𝑡′) 𝜓1
(𝑆)(𝑡 − 𝑡′)𝑑𝑡′

𝑡

0
                                (𝐴. 2)  

Applying the Laplace transform on Eq. A.2, we obtain 

𝜓𝑛
(𝑆)(𝑢) =  𝜓𝑛−1

(𝑆) (𝑢) 𝜓1
(𝑆)(𝑢)                                         (𝐴. 3) 

Note that 𝜓1
(𝑆)(𝑡) = 𝜓(𝑡) and 𝜓0

(𝑆)(𝑡) = 𝛿(𝑡). Thus 𝜓�𝑛
(𝑆)(𝑢) = �𝜓�𝑆(𝑢)�

𝑛
.  

On the other hand, in order to apply the Laplace transform on Ψ(𝑆)(𝑡 − 𝑡′), we 

used the definition of Ψ(𝑆)(𝑡) = 1 − ∫ 𝜓(𝑆)(𝑡′)𝑑𝑡′𝑡
0  and then apply the Laplace transform 

and we arrive at Ψ� 𝑆(𝑢) = 1 𝑢⁄ �1 − 𝜓�𝑆(𝑢)� . Therefore, after applying the Laplace 

transform on Eq. A.1 we get 

Ψ�(𝑢) =
1
𝑢
�1 −𝜓�𝑆(𝑢)�� �𝜓�𝑆(𝑢)�

𝑛
 (1 − 𝑃𝑆)𝑛

∞

𝑛=0

                       (𝐴. 4) 

Using the geometric series properties, Eq. A.4 reads as 

Ψ� 𝑆(𝑢) =
1
𝑢

  
1 − 𝜓�𝑆(𝑢)

1 − 𝜓�𝑆(𝑢)(1 − 𝑃𝑆)
                                         (𝐴. 5) 

Dividing Eq. A.5 by 1 − 𝜓�𝑆(𝑢) and introducing Φ� (𝑢) = 𝑢𝜓�𝑆(𝑢)
1−𝜓�𝑆(𝑢), we arrive at Eq. 2.7.
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APPENDIX B  

TIME CONVOLUTION OF SURVIVAL PROBABILITY
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Let us define 

𝑝̂(𝑥,𝑢 𝑥0⁄ ) = � 𝑒−𝑢𝑡
∞

0
𝑝(𝑥, 𝑡 𝑥0⁄ )𝑑𝑡                                    (𝐵. 1) 

And  

𝑝̂(𝑥, 𝑢 Θ⁄ ) = � 𝑒−𝑢𝑡
∞

0
𝑝(𝑥, 𝑡 Θ⁄ )𝑑𝑡                                    (𝐵. 2) 

And the Laplace transform of survival probability, Ψ�(𝑢) ≡ ∫ 𝑑𝑡 Ψ(𝑡) exp(−𝑢𝑡)∞
0 , we can 

used the convoluted nature of Eq. 3.11 we obtain 

𝑝̂(𝑥,𝑢 𝑥0⁄ ) = 𝜓�(𝑢)𝑝̂(𝑥,𝑢 Θ⁄ )                                         (𝐵. 3) 

Where  

𝜓�(𝑢) =
𝑝̂(𝑥,𝑢 𝑥0⁄ )
𝑝̂(𝑥,𝑢 Θ⁄ )                                                (𝐵. 4) 

From [38] we have 

� 𝑒−𝑢𝑡
1
√𝜋𝑡

∞

0
exp�−

𝑘2

4𝑡
� =

1
√𝑢

𝑒−𝑘√𝑢                                            (𝐵. 5) 

We get 

𝑝̂(𝑥,𝑢 𝑥0⁄ ) =
1

√4𝐷
 𝑒𝑥𝑝 �

𝑆(𝑥 − 𝑥0)
2𝐷

�  
𝑒𝑥𝑝 �− 𝑥−𝑥0

2𝐷
�2(𝑢 − 𝑐)�

√𝑢 − 𝑐
                (𝐵. 6) 

And 

𝑝̂(𝑥,𝑢 Θ⁄ ) =
1

√4𝐷
 𝑒𝑥𝑝 �

𝑆(𝑥 − Θ)
2𝐷

�  
𝑒𝑥𝑝 �− 𝑥−Θ

2𝐷
�2(𝑢 − 𝑐)�

√𝑢 − 𝑐
                (𝐵. 7) 

With 𝐶 = − 𝑆2

4𝐷
. Thus using Eqs. B.6 and B.7 and plugging into Eq. B.4, we arrive at 

𝜓�(𝑢) = 𝑒𝑥𝑝 �
Θ − 𝑥0

2𝐷
�𝑆 − (𝑆2 + 4𝐷𝑢)1/2��                                   (𝐵. 8) 

Let us use [38]  
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� 𝑒−𝑢𝑡
∞

0

1
√𝜋𝑡3

𝑒𝑥𝑝 �−
𝑘2

4𝑡
�  𝑑𝑡 = 𝑒−𝑘√𝑢  ,   𝑘 ≥ 0                                (𝐵. 9) 

This allows us to apply anti-Laplace transform on Eq. B.8 and obtain the result of Eq. 

3.12. 

  

77 



BIBLIOGRAPHY 

[1] P. Sibani, H. J. Jensen, World Scientific and Imperial College Press, ISBN 978-1-
84816-993-7 (2013) . 

[2] N. Boccara, Springer-Verlag, ISBN 0-387-40462-7, (2004). 

[3] R. W. Sperry, Neuroscience 5, 195-206 (1980). 

[4] E. Tagliazucchi, D.H. Chialvo, Studies of Nonlinear Phenomena in Life Science 15, 
57-80 (2011). 

[5] T. W. Robbins, Neuropsychopharmacology 36(1), 1–2 (2011).  

[6] P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381-384 (1987). 

[7] P. Lansky, S. Ditlevsen, BioCybern, 99:235 (2008). 

[8] J. M. Beggs, D. Plenz, J. Neurosci, 23, 11167-11177 (2003 

[9] F. Lombardi, H. J. Herrmann, C. Perrone-Capano, D. Plenz, L. de Arcangelis, Phys. 
Rev. Lett. 108, 228703, 1-5 (2012). 

[10] W. L. Shew, D. Plenz, The Neuroscientist, 19, 88-100 (2012). 

[11] C. Haldeman, J. M. Beggs, Phys. Rev. Lett. 94, 058101, 1-4 (2005). 

[12] J. E. S. Socolar, S. A. Kauffman, Phys. Rev. Lett. 90, 068702, 1-4 (2003). 

[13] W. L. Shew, H.Yang, S. Yu, R. Roy, D. Plenz, J. Neurosci. 31, 55-63 (2011).  

[14] D. B. Larremore, W. L. Shew, E. Ott, J. G. Restrepo, Chaos 21, 025117, 1-10 
(2011). 

[15] N. Bertschinger, T. Natschlager, Neural. Comput. 16, 1413-1436 (2004). 

[16] D. Plenz, T. C.Thiagarajan, Trends Neurosci, 30, 101-110 (2007). 

[17] J. M. Beggs, Phil. Trans. R. Soc. A 366, 329-343 (2008). 

[18] D. R. Chialvo, Physica A 340, 756-765 (2004). 

[19] D. R. Chialvo, Nat. Phys. 6, 744-750 (2010). 

[20] J. P Onnela, J. Saramaki, J. Hyvonen, G,  Szabo, D. Lazer ,K, Kaski, J. Kertesz, A. 
L. Barabasi, Proceedings of the National Academy of Sciences 104 (18): 7332–
7336(2007). 

[21] G. Werner, Chaos, Solitons and Fractals, in press (2013). 

78 



[22] K. G. Wilson, J. Kogut, Phys. Rep. 12, 75-199 (1974). 

[23] N. Dehghani, N. G. Hatsopoulos, Z. D. Haga, R. A. Parker, B. Greger, E. Halgren, 
S. S. Cash, A. Destexhe, Front. Physiol. 3, 302, 1-18 (2012). 

[24] R. Metzler,J. Klafter, Journal of Non-Crystalline Solids 305, 81 (2002). 

[25] West, B.J., Bologna, M., Grigolini, P, Springer-Verlag, New York (2003). 

[26] S. Bianco, M. Ignaccolo, M.S. Rider, M.J. Ross, P. Winsor, P. Grigolini, Phys. Rev. 
E, 75, 061911 (2007).  

[27] R. Failla, M. Ignaccolo, P, Grigolini, A. Schwettmann, Phys. Rev E, 70, 010101 
(2004). 

[28] A.-L. Barabási, Nature, 435, 207-211 (2005). 

[29] I.M. Sokolov, Phys. Rev. E, 63, 011104; (2000) 

[30] E. Barkai, R.J. Silbey, J. Phys. Chem. B, 104, 3866 (2000). 

[31] R. Metzler, J. Klafter, J.Phys. Chem. B, 104, 3851 (2000). 

[32] I.M. Sokolov, J. Klafter, Chaos, 15, 026103 (2005). 

[33] D. Plenz and T. C. Thiagarajan, Trends in Neurosciences, 30, 101 (2007). 

[34] C. S. Peskin, New York University, New York, 268-278, 1975. 

[35] R. E. Mirollo, S. H. Strogatz, SIAM journal of applied mathematics, 50, 1645-1662 
(1990). 

[36] E. Geneston, P. Grigolini, World Scientific, Studies of Nonlinear Phenomena in 
LifeScience, Singapore,Vol.15, 135–160 (2011). 

[37] L. P. Kadanoff, World Scientific. ISBN 981-02-3764-2 (2000). 

[38] M. Abramowitz, I. A. Stegun, Dover Publication, New York (1965). 

[39] H. A. Kramers, Physica 7, 284 (1940). 

[40] B.J. Kim, Phys. Rev. Lett., 93, 168701 (2004). 

[41] M. Turalska, E. Geneston, B.J. West, P. Allegrini, P. Grigolini, Front. Physiol, 3, 52 
(2012). 

[42] M.I. Ham, L. M.A. Bettencourt, F.D. McDaniel, G.W. Gross, Journal of 
Computational Neuroscience, 24, 346-357 (2008). 

79 



[43] E. Lovecchio, P. Allegrini, E. Geneston, B. J.West, P. Grigolini, Front. Physiol. 3, 96 
(1-9) (2012). 

[44] G. W. Gross, Multielectrode arrays, Scholarpedia, 6(3):5749(2011). 

[45] E. Niedermeyer, F.L. da Silva, Lippincot Williams & Wilkins. ISBN 0-7817-5126-
8(2004). 

[46] P. Grigolini, M. Zare, A. Svenkeson, B. J. West, edited by D. Plenz and E. Niebur, 
(eds.) John Wiley & Sons,New York ISBN: 978-3-527-41104-7 (2013). 

[47] G. Longo, M. Montevil, Front. Physiol, 3: 39, (2012). 

[48] K. Binder, Z. Phys. B. 43, 119-140 (1981). 

[49] M. Turalska, B. J. West, P. Grigolini, Sci. Rep. 3,1371 (1-8) (2012). 

[50] M. Turalska, B. J. West, P. Grigolini, Phys. Rev. E 83, 061142 (1-6) (2011). 

[51] I. Podlubny, M. Kacenak, MATLAB Central File Exchange, File ID 8735, mlf.m,  
http://www.mathworks.com/matlabcentral/fileexchange (2005). 

[52] A. Svenkeson, M. Bologna, P. Grigolini, Phys. Rev. E 86, 041145 (1-10) (2012). 

[53] Y. F. Contoyiannis, F. K. Diakonos, Phys. Lett. A 268, 286-292 (2000); Y. F. 
Contoyiannis, F. K. Diakonos, A. Malakis, Phys. Rev. Lett. 89, 035701 (1-4) (2002). 

[54] S. Bianco, P. Grigolini, P. Paradisi, J. Chem. Phys. 123, 174704 (1-10) (2005). 

[55] J. L. Rodgers, W. A. Nicewander, The American Statistician, 42, 5966 (1988). 

[56] A. Kraskov, H. Stogbauer, R. G. Andrzejak, P. Grassberger, Europhys. Lett. 70, 
278-284 (2005). 

[57] S. Zapperi, K. B. Lauritsen, H.E. Stanley, Phys. Rev. Lett. 75, 4071-4074 (1995). 

[58] V. Priesemann, M. H. J. Munk, M. Wibral, BMC neuroscience, 10, 40 (1-20) (2009). 

[59] J. M. Beggs, N. Timme, Front. Physiol. 3, 163 (1-14) (2012). 

[60] J. Touboul, A. Destexhe, PLoS ONE 5, 8982 (1-14) (2010). 

[61] S. Luccioli and A. Politi, Phys. Rev. Lett. 105, 158104 (2010). 

[62] K. Christensen, N. R. Moloney, Imperial College Press, London, 2005. 

[63] F. Mainardi, J. Comp. Appl. Math. 118, 283 (2000). 

[64] N. Korabel, E. Barkai, Phys. Rev. Lett. 108, 060604 (2012). 

80 



[65] S. Burov, R. Metzler, E. Barkai, Proc. Natl. Acad. Sci. USA 107, 13228 (2010). 

[66] F. Vanni, M. Lukovic, P. Grigolini, Phys. Rev. Lett. 107, 078103 (2011). 

[67] A. R. Bulsara, T. C. Elston, C. R. Doering, S. B. Lowen, K. Lindenberg, Phys. Rev. 
E 53, 3958 (1996). 

[68] P. L´ansk´y, Phys. Rev. E 55, 2040 (1997). 

[69] M. Zare, P. Grigolini, Phys. Rev. E 86, 051918 (1-6) (2012). 

[70] L. de Arcangelis, C. Perrone-Capano, and H. J. Herrmann, Phys. Rev. Lett. 96, 
028107 (2006). 

[71] L. de Arcangelis, Eur. Phys. J. Special Topics 205, 243 (2012). 

[72] V. F. Pisarenko and D. Sornette, Eur. Phys. J. Special Topics 205, 95 (2012). 

[73] M. Turalska, E. Geneston, B. J. West, P. Allegrini, P. Grigolini, Front. Physiol 3, 52 
1-6 (2012). 

[74] D. Fulger, E. Scalas, G. Germano, Phys. Rev. E 77, 021122 (1-7) (2008). 

[75] R. Bettin, R. Mannella, B. J. West, P. Grigolini, Phys. Rev. E 51, 212-219 (1995). 

[76] E. Floriani, R. Mannella, P. Grigolini, Phys. Rev. E 52, 5910-5917 (1995). 

[77] Y. Pomeau, P. Manneville, Comm. Math. Phys. 74, 189-197 (1980). 

[78] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 
175–308 (2006). 

[79] A. Arenas ,A. Díaz-Guilera ,J. Kurths, Y. Moreno, C. Zhou, Phys.Rep. 469,93–153 
(2006). 

[80] D.O. Hebb, Organization of Behavior, New York: Wiley (1949). 

[81] D. Fraiman, P.Balenzuela, J. Foss, D.R. Chialvo, Phys.Rev.E 79, 061922 (2009). 

[82] N. W. Hollingshad, M. Turalska, P. Allegrini; B. J. West, P. Grigolini,  Physica A 
391, 1894-1899 (2012). 

[83] R. Cohen, S. Havlin, Phys. Rev. Lett. 90, 1–4 (2003). 

[84] W. Gao, J. H. Gilmore, K. S. Giovanello, J. K. Smith, D. Shen, H. Zhu, W. Lin, PLoS 
ONE 6(9): e25278 (2011). doi:10.1371/journal.pone.0025278. 

81 


	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1  INTRODUCTION
	CHAPTER 2  THE MITTAG–LEFFLER FUNCTION MODELS COOPERATION
	2.1 The Survival Probability as the Mittag-Leffler Function
	2.2 The Mittag-Leffler Function and Inverse Power Law

	CHAPTER 3  MODEL DESCRIPTION
	3.1 The Mirollo-Strogatz Model
	3.2 Stochastic Version of the Mirollo-Strogatz Model
	3.3 Neurons Cooperative Behavior

	CHAPTER 4  COOPERATION-INDUCED CRITICALITY IN REGULAR LATTICE
	4.1 Spiking Pattern and Survival Probability
	4.2 Detection of Temporal Complexity
	4.3 Phase Transition
	4.4 Testing of Renewal Properties
	4.4.1 Non-Stationary Correlation Function
	4.4.2 Aging Intensity

	4.5 Information Transfer at Criticality
	4.6 Self-Organized Criticality

	CHAPTER 5  COOPERATION IN NEURAL NETWORK: BRIDGING COMPLEXITY AND PERIODICITY
	5.1 Temporal Complexity
	5.2 Cooperation-Induced Renewal Breaking
	5.3 Neural Avalanches
	5.4 Summary

	CHAPTER 6  TWO SOURCES OF POWER LAW TRUNCATION
	6.1 Power Law Truncation
	6.2 Noise-Induced Tail Truncation
	6.3 Periodicity-Induced Tail Truncation

	CHAPTER 7  COOPERATION-INDUCED TOPOLOGICAL COMPLEXITY
	7.1 Network Topological Evolution
	7.2 Cooperation-Induced Network Topology
	7.3 Network Efficiency and Learning

	CHAPTER 8  GENERAL CONCLUSION
	APPENDIX A  SUBORDINATION APPROACH ON SURVIVAL PROBABILITY
	APPENDIX B  TIME CONVOLUTION OF SURVIVAL PROBABILITY
	BIBLIOGRAPHY

