Exon/Intron Discrimination Using the Finite Induction Pattern Matching Technique

PDF Version Also Available for Download.

Description

DNA sequence analysis involves precise discrimination of two of the sequence's most important components: exons and introns. Exons encode the proteins that are responsible for almost all the functions in a living organism. Introns interrupt the sequence coding for a protein and must be removed from primary RNA transcripts before translation to protein can occur. A pattern recognition technique called Finite Induction (FI) is utilized to study the language of exons and introns. FI is especially suited for analyzing and classifying large amounts of data representing sequences of interest. It requires no biological information and employs no statistical functions. Finite … continued below

Physical Description

x, 102 leaves : ill.

Creation Information

Taylor, Pamela A., 1941- December 1997.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 287 times. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Taylor, Pamela A., 1941-

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Description

DNA sequence analysis involves precise discrimination of two of the sequence's most important components: exons and introns. Exons encode the proteins that are responsible for almost all the functions in a living organism. Introns interrupt the sequence coding for a protein and must be removed from primary RNA transcripts before translation to protein can occur.

A pattern recognition technique called Finite Induction (FI) is utilized to study the language of exons and introns. FI is especially suited for analyzing and classifying large amounts of data representing sequences of interest. It requires no biological information and employs no statistical functions. Finite Induction is applied to the exon and intron components of DNA by building a collection of rules based upon what it finds in the sequences it examines. It then attempts to match the known rule patterns with new rules formed as a result of analyzing a new sequence. A high number of matches predict a
probable close relationship between the two sequences; a low number of matches signifies a large amount of difference between the two. This research demonstrates FI to be a viable tool for measurement when known patterns are available for the formation of rule sets.

Physical Description

x, 102 leaves : ill.

Subjects

Keywords

Library of Congress Subject Headings

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 1997

Added to The UNT Digital Library

  • March 24, 2014, 8:07 p.m.

Description Last Updated

  • Aug. 22, 2014, 10:07 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 287

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Taylor, Pamela A., 1941-. Exon/Intron Discrimination Using the Finite Induction Pattern Matching Technique, dissertation, December 1997; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc277629/: accessed April 25, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen