Water-soluble Phosphors for Hypoxia Detection in Chemical and Biological Media

Access: Use of this item is restricted to the UNT Community
Description:

Water-soluble Pt(II) phosphors exist predominantly for photophysical studies. However, fewer are known to be candidates for cisplatin derivatives. If such a molecule could exist, it would be efficient at not only destroying the cancerous cells which harm the body, but the destruction would also be traceable within the human body as it occurred. Herein, research accomplished in chemistry describes the photophysical properties of a water-soluble phosphor. Spectroscopically, this phosphor is unique in that it possesses a strong green emission at room temperature in aqueous media. Its emission is also sensitive to the gaseous environment. These properties have been expanded to both analytical and biological applications. Studies showing the potential use of the phosphor as a heavy metal remover from aqueous solutions have been accomplished. The removal of toxic heavy metals was indicated by the loss of emission as well as the appearance of a precipitate. The gaseous sensitivity was elicited to be used as a potential cancerous cell biomarker. In vivo studies were accomplished in a wide variety of species, including bacteria (E. coli), worms (C. elegans), small crustaceans (Artemia), and fish (D. rerio and S. ocellatus). The phosphor in question is detectable in all of the above. This fundamental research lays the foundation for further expansion into bioinorganic chemistry, and many other possible applications.

Creator(s): Satumtira, Nisa Tara
Creation Date: December 2012
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 47
Past 30 days: 9
Yesterday: 2
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Publisher Info: www.unt.edu
Place of Publication: Denton, Texas
Date(s):
  • Creation: December 2012
Description:

Water-soluble Pt(II) phosphors exist predominantly for photophysical studies. However, fewer are known to be candidates for cisplatin derivatives. If such a molecule could exist, it would be efficient at not only destroying the cancerous cells which harm the body, but the destruction would also be traceable within the human body as it occurred. Herein, research accomplished in chemistry describes the photophysical properties of a water-soluble phosphor. Spectroscopically, this phosphor is unique in that it possesses a strong green emission at room temperature in aqueous media. Its emission is also sensitive to the gaseous environment. These properties have been expanded to both analytical and biological applications. Studies showing the potential use of the phosphor as a heavy metal remover from aqueous solutions have been accomplished. The removal of toxic heavy metals was indicated by the loss of emission as well as the appearance of a precipitate. The gaseous sensitivity was elicited to be used as a potential cancerous cell biomarker. In vivo studies were accomplished in a wide variety of species, including bacteria (E. coli), worms (C. elegans), small crustaceans (Artemia), and fish (D. rerio and S. ocellatus). The phosphor in question is detectable in all of the above. This fundamental research lays the foundation for further expansion into bioinorganic chemistry, and many other possible applications.

Degree:
Level: Doctoral
PublicationType: Disse
Language(s):
Subject(s):
Keyword(s): Chemistry | luminescence | hypoxia
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • ARK: ark:/67531/metadc177252
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Use restricted to UNT Community
Holder: Satumtira, Nisa Tara
License: Copyright
Statement: Copyright is held by the author, unless otherwise noted. All rights Reserved.