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Laminar natural convection heat transfer from the vertical surface of a cylinder is a 

classical subject, which has been studied extensively. Furthermore, this subject has generated 

some recent interest in the literature. In the present investigation, numerical experiments were 

performed to determine average Nusselt numbers for isothermal vertical cylinders (103 < RaL < 

109, 0.5 < L/D <10, and Pr = 0.7) with and without an adiabatic top in a quiescent 

ambient environment which will allow for plume growth. Results were compared with 

commonly used correlations and new average Nusselt number correlations are presented. 

Furthermore, the limit for which the heat transfer results for a vertical flat plate may be used as 

an approximation for the heat transfer from a vertical cylinder was investigated. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

Laminar natural convection from isothermal vertical cylinders has its applications in 

many industries today. One example is the design of vertically oriented electronic pins and 

components that require cooling from natural convection. Using natural convections as a means 

of cooling electronic equipment results in a reduced size requirement during design and increases 

overall efficiency.  Equations relating Nusselt number to environmental properties and cylinder 

size can be found in recent research such as the analysis of the thermo-mechanical behavior of 

shape memory alloys used in shape memory actuators. [25] 

Laminar natural convection heat transfer from the vertical surface of a cylinder is a 

classical subject, which has been studied extensively. When the boundary layer thickness δ is 

small compared to the diameter of the cylinder, Nusselt numbers may be determined by 

approximating the curved vertical surface as a flat plate. However, when the boundary layer 

thickness is large compared to the diameter of the cylinder, effects of curvature must be taken 

into account. Many investigators have studied the curvature limits for which the flat-plate model 

can be applied to estimate Nusselt numbers for vertical cylinders. Furthermore, these 

investigators have presented Nusselt number correlations for isothermal vertical cylinders. 

 

1.2  Nomenclature 

A   coefficient/Area 

a   coefficient 

AR   aspect ratio, L/D 
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b   coefficient 

BFF   body force function 

C   constant 

c   coefficient 

cp  specific heat at constant pressure 

D   diameter of the cylinder 

F   function 

f   function 

G   function 

g   gravitational constant 

Gdyn  dynamic gravity function 

Glow   lower-bound gravity function 

Gup  upper-bound gravity function 

Gr√A  Grashof number, gβ(Tcylinder-T∞)�A3/ν2 

GrL   Grashof number, gβ(Tcylinder-T∞)L3/ν2 

H   height of solution domain 

h�  average convective heat transfer coefficient 

k  thermal conductivity 

L   height of cylinder 

n   coefficient 

Nu√A  average Nusselt number, h�√A/k 

Nu√A
0   conduction limit 

NuL  average Nusselt number, h�L/k 
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NuL, f p   average Nusselt number of flat plate 

P   dimensionless pressure, (P-P∞)/ρ(νD)2 

p   pressure 

p∞  free-stream pressure 

Pr   Prandtl number, cpµ/k 

R,Z   dimensionless cylindrical coordinates, (r,z)/D 

r,z   cylindrical coordinates 

RaL  Rayleigh number, GrLPr 

T   temperature 

Tcylinder   temperature at the vertical surface of the cylinder 

T∞  temperature of the ambient environment 

UR,UZ  dimensionless velocity components, (ur,uz)/(ν/D) 

W   width of solution domain 

 

Greek 

β   isobaric coefficient of thermal expansion 

δ   boundary layer thickness 

θ  dimensionless temperature, (T-T∞)/(Tcylinder-T∞) 

μ  dynamic viscosity of the fluid 

ν   kinematic viscosity of the fluid 

ξ  curvature parameter, (4L/D)(GrL/4)-1/4 

ρ  density of the fluid 

 

3 



1.3 Flat Plate Approximation 

In most heat transfer textbooks, including but not limited to Incropera et al. [1, 2], 

Holman [3], Burmeister [4], and Gebhart et al. [5], the accepted limit for which the flat-plate 

solution can be used to approximate average Nusselt numbers for vertical cylinders (Pr = 0.72) 

within 5% error is 

D
L

≥ 35
GrL

0.25      (1.1) 

where D is the diameter of the cylinder, L is the height of the cylinder, and GrLis the 

Grashof number based on the height of the cylinder. This limit was derived by Sparrow and 

Gregg [6] in 1956 using a pseudo-similarity variable coordinate transformation and perturbation 

technique for solving the heat transfer and fluid flow adjacent to an isothermal vertical cylinder. 

They assumed the boundary layer thickness at the leading edge to be zero and they made use of 

the boundary layer approximation(all pressure gradients are zero and streamwise second 

derivatives are neglected) and Boussinesq approximation(density difference are small). In 

addition, Nusselt numbers for vertical cylinders (Pr = 0.72 and 1; 0 <ξ< 1) are presented as a 

truncated series solution and plotted. The curvature parameter ξ arose from a coordinate 

transformation done by [6] and is defined as 

ξ= 4L
D
�GrL

4
�

-1 4⁄
      (1.2) 

 

1.4  Integral Method 

Around the same time as Sparrow and Gregg, Le Fevre and Ede [7, 8] solved the 

governing equations using the same assumptions as [6] with an integral method to obtain a 

correlation for vertical cylinder average Nusselt numbers, which is shown below. 
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NuL= 4
3
� 7GrLPr

5(20+21Pr)�+ 4(272+315Pr)L
35(64+63Pr)D

    (1.3) 

In this equation, NuL is the average Nusselt number and Pr is the Prandtl number. 

 

1.5 Boundary Layer Approximation Method 

In 1974, Cebeci [9] extended the work of [6] by numerically solving the governing 

equations using the boundary-layer approximation for 0.01 ≤ Pr ≤ 100 and 0 <ξ< 5. The results 

of Cebeci for the average Nusselt number for an isothermal vertical cylinder Pr = 0.72 have been 

correlated in Popiel [10] with range of deviation from -0.34% - 0.66% 

NuL
NuL,fp

=1+0.3 �320.5GrL
-0.25 L

D
�

0.909
    (1.4) 

In this equation, NuLfp is the average Nusselt number for the isothermal flat plate. 

Typically, the value for NuLfp is taken from the Churchill and Chu [11] correlations for natural 

convection from a vertical flat plate. 

NuL,fp=0.68+ 0.670RaL
1 4⁄

�1+(0.492 Pr⁄ )9 16⁄ �4 9⁄     (1.5) 

In this equation, RaL is the Rayleigh number based on the height of the cylinder. Also in 

1974, Minkowycz and Sparrow [12] continued the work of [6] by investigating the impact of 

different levels of truncation in the series solution. Their findings indicate good agreement with 

[6] with a maximum deviation of 4% between the average Nusselt number solutions. They 

obtained results in graphical form for 0 <ξ< 10 and for Pr = 0.733. 

 

1.6 Similarity Solution Method 

In the late 1980s, Lee et al. [13] solved the boundary layer equations for non-uniform 

wall temperature using the similarity solution method. Their work extends that of Fujii and 
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Uehara [14], except that unlike the authors of [14] who present information for local Nusselt 

numbers only, the authors of [13] present correlations for both the local and average Nusselt 

numbers for 0 <ξ< 70. The average Nusselt number correlation in [13] for 0.1 ≤ Pr ≤ 100 when 

the wall temperature is uniform is reduced to 

ln �NuL �
GrL

4
�

-1 4⁄
�=F(ξ)+ �ln �NuL,fp �

GrL
4
�

-1 4⁄
+2.92629�� exp�-Gξ1 2⁄ � (1.6) 

and F and G are functions such that 

F(ξ)=-2.92620+1.66850ξ1 2⁄ -0.21909ξ+0.011308ξ3 2⁄  (1.7) 

and 

G=0.29369+0.3263Pr-0.19305    (1.8) 

with NuLfpbeing defined as 

NuLfp �
GrL

4
�

-1 4⁄
=(2Pr)1 2⁄ �2.5�1+2Pr1 2⁄ +2Pr��

-1 4⁄
    (1.9) 

 

1.7 Experiments on Natural Convection from an Isothermal Vertical Cylinder 

Although much classical work on the natural convection heat transfer from isothermal 

vertical cylinders has been reported, there has been recent interest in the subject as seen by a 

contemporary review article in 2008 on the subject by Popiel [10]. In 2003, Muñoz-Cobo et al. 

[15] studied power-law temperature distributions following on the work of Lee et al. [13]. In 

addition, several investigators have recently used either experimental means [16, 17] or older 

analytical and numerical techniques [18] to study natural convection from a vertical cylinder. 

Popiel et al. [17] conducted an experimental study on natural convection from an 

isothermal vertical cylinder. The investigators in [17], using the data reported in [9], propose a 
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new limit for which the flat plate solution can be used to approximate the average Nusselt 

numbers with 3% error 

GrL
0.25 D

L
≤a+ b

Pr0.5 + c
Pr2     (1.10) 

where a = 11.474, b = 48.92, and c = -0.0006085. Furthermore, experiments were conducted on 

an isothermal vertical cylinder with an insulated top situated on an insulated surface for Pr = 

0.71, 1.5x108< RaL<1.1x109, and 0 < L/D <60. The results of this study were correlated into the 

following equation 

NuL≤ARaL
n      (1.11) 

where 

A=0.519+0.03454 L
D

+0.0008772 �L
D
�

2
+8.855x10-6 �L

D
�

3
   (1.12) 

and 

n=0.25-0.00253 L
D

+1.152x10-5 �L
D
�

2
    (1.13) 

Their results agree fairly well with Cebeci [9] for the higher Rayleigh numbers which were 

studied. 

In the majority of the work done on natural convection heat transfer from vertical 

cylinders, the top of the cylinder is usually assumed to be adiabatic. Despite the vast amounts of 

literature available, to the best knowledge of the authors, very few investigators have studied the 

effect of a heated top on the average Nusselt number. In 1978, Oosthuizen [19]examined the 

effect of cylinders having heated exposed ends on the average Nusselt number. In general, he 

found that the average Nusselt numbers for the heated ends was up to 30% lower in some cases 

compared to the equivalent cylinder with an adiabatic end. 
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Very recently, Eslami and Jafarpur [20] (who built upon the previous work of several 

other studies [21–24]) investigated laminar natural convection from isothermal cylinders with 

active ends. These authors present a generalized semi-empirical method to calculate average 

Nusselt numbers from arbitrary shapes in which they use to present results for specific geometric 

cases, including vertical cylinders. The generalized equation for the Nusselt number for a vertical 

cylinder with one active end (heated top) based on the square-root of the area is 

Nu√A=Nu√A
0 +f(Pr)GdynRa√A

1 4⁄     (1.14) 

where f(Pr) is the Prandtl function 

f(Pr)= 0.670

�1+(0.5 Pr⁄ )9 16⁄ �4 9⁄     (1.15) 

and the dynamic gravity function is defined as 

Gdyn=
BFF+

Gup
Glow

Ra
√A  
1 4⁄

BFF+C∙Ra
√A  
1 4⁄ C∙Glow    (1.15) 

where the body force function is 

BFF=
Nu√A

0

f(Pr)Glow
     (1.16) 

C=0.34+0.046∙BFF    (1.17) 

and the lower-bound and upper-bound gravity force functions specifically for a vertical cylinder 

with one heated end are 

Glow= �0.9524 3⁄ � πD2 4⁄
πD2 4⁄ +πDL

�
7 6⁄

+�1.154(𝐷 𝐿⁄ )1 8⁄ �
4 3⁄

� πDL
πD2 4⁄ +πDL

�
7 6⁄
�

3 4⁄

  (1.18) 

Gup = 0.952 � πD2 4⁄
πD2 4⁄ +πDL

�
7 8⁄

+1.154(𝐷 𝐿⁄ )1 8⁄ � πDL
πD2 4⁄ +πDL

�
7 8⁄

  (1.19) 

The conduction limit for circular cylinders 0 ≤ L/D ≤ 8 is 

Nu√A
0 = 8.00+6.95(L D⁄ )0.76

[2π+4π(L D⁄ )]1 2⁄      (1.20) 
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The Nusselt numbers based on the square-root of the area were converted to Nusselt numbers 

based on the height (L) of the cylinders when later compared to the results of the present study. 

High-quality natural convection heat transfer experiments that correctly interrogate 

heated shapes in air are inherently difficult to perform, which is reflected in the lack of 

experimental data available in the literature. Much analytical and numerical work is inconsistent 

due to the practices of 1) neglecting the streamwise second derivative in the Navier-Stokes 

equation (i.e., using boundary-layer approximation), 2) using boundary conditions that are not 

representative of the space surrounding real objects, and 3) method of solution (integral, pseudo-

similarity, finite-difference). Previous work typically places the boundary at the top of the 

cylinder instead of considering the effect of the resulting plume on the boundary layer of the 

vertical surface. In addition, the majority of previous investigators ignored the effect of a heated 

top in the calculation of the average Nusselt numbers. 

The goal of this work is to perform numerical experiments which take into account the 

streamwise second derivatives in the governing equations and allow for full plume growth to 

determine average Nusselt numbers for laminar isothermal vertical cylinders (102 < RaL< 109, 0.1 

< L/D < 10, and Pr = 0.7) situated on an adiabatic surface in a quiescent ambient environment 

which will allow for plume growth. The results will be compared against all other known 

classical solutions for isothermal vertical cylinders. Furthermore, the validity of Eqs. (1) and (10) 

for determining the range at which the flat-plate solution may be used as an approximation for a 

vertical cylinder will be investigated. Lastly, the effect of ignoring a heated top on the average 

Nusselt numbers will be shown. 

  

9 



CHAPTER 2  

PROBLEM FORMULATION 

2.1 Physical Model and Solution Domain 

Consider a vertical cylinder with isothermal walls and an adiabatic or heated top of 

diameter D and height L situated on an adiabatic surface in a quiescent, constant-temperature 

ambient environment. The top will either be adiabatic in order to investigate the accuracy of the 

classical side-wall solutions, or isothermal (heated top) in order to compare against the adiabatic-

top case. Due to both geometric and thermal axisymmetry, this problem may be modeled as two-

dimensional.  

 

Fig. 2.1 Solution Domain 

In Fig. 2.1 r and z are the radial and axial coordinates, respectively. Furthermore, W is 

the width of the solution domain which is set to 5D and H is the height of the solution domain 
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which is equal to (24D + L). The aspect ratio of the cylinder, AR=L/D, is varied parametrically, 

0.1 ≤ AR ≤ 10. 

 

2.2 Governing Equations 

The subsequent dimensionless variables are used in writing the governing equations 

R = r
L

,Z= z
L

,UR= ur
�ν L� �

, UZ= uz
�ν L� �

, P= p-p∞

ρ�ν L� �2 , θ= T-T∞
Tcylinder-T∞

   (2.1) 

and 
 

GrL= gβ�Tw-T∞�L3

ν2 , Pr= cpμ
k

    (2.2) 
 

Here, r and z are the radial and axial coordinates respectively, ur and uz are the radial and axial 

velocity components, n is the kinematic viscosity, T is the temperature, Tcylinder is the temperature 

at the wall of the cylinder, T∞ is the ambient temperature far from the cylinder, p is the local 

pressure, p∞ is the freestream pressure, g is gravity, β is the coefficient of thermal expansion, cp 

is the specific heat at constant pressure, μ is the dynamic viscosity and k is the thermal 

conductivity. All thermal properties are assumed to be constant. 

The governing equations for axisymmetric, laminar, incompressible, natural convection 

flow are 

• Conservation of mass 

1
R

∂(RUR)
∂R

+ ∂(UZ)
∂Z

=0     (2.3) 

• Conservation of momentum in the Z-direction 

UR
∂UZ
∂R

+UZ
∂UZ
∂Z

=- ∂P
∂Z

+ 1
R

∂
∂R

R ∂UZ
∂R

+ ∂2UZ

∂Z2 +GrLθ    (2.4) 
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• Conservation of momentum in the R-direction 

UR
∂UR
∂R

+UZ
∂UR
∂Z

=- ∂P
∂R

+ 1
R

∂
∂R

R ∂UR
∂R

+ ∂2UR

∂Z2 - UR

R2    (2.5) 

• Conservation of energy 

UR
∂θ
∂R

+UZ
∂θ
∂Z

= 1
Pr
�1

R
∂

∂R
R ∂θ
∂R

+ ∂2θ
∂Z2�   (2.6) 

The Boussinesq approximation can be employed here due to negligible density 

differences. The viscous dissipation and work terms can be neglected in the energy equation 

because of the small velocities encountered in natural convection flow. 

 

2.3 Boundary Conditions 

The temperature at the vertical surface of the cylinder is Tcylinder and the no-slip condition 

is applied. The boundary conditions at the surface of the cylinder in dimensionless form are 

UZ=UR=0 and θ=1     (2.7) 

The top surface of the cylinder is either adiabatic 

𝜕𝜃
𝜕𝑍

= 0      (2.8) 

or isothermal 

𝜃 = 1      (2.9) 

In both cases, no-slip applies 

UZ=UR=0     (2.10) 

On the bottom surface of the fluid domain, adiabatic and no-slip boundary conditions are applied 

such that 

UZ=UR=0 and 𝜕𝜃
𝜕𝑍

= 0    (2.11) 
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Along the axis of symmetry (R = 0) the boundary conditions are 

𝑈𝑅 = 𝜕𝑈𝑍
𝜕𝑅

= 𝜕𝜃
𝜕𝑅

= 0    (2.12) 

 Relatively weak boundary conditions (the so-called opening condition in ANSYS CFX) 

are placed at the far-field boundaries at the top and side of the solution domain. The conditions 

allow the flow to either entrain into the domain or flow out. Specified at these boundaries are the 

pressure and the temperature of the fluid if entering into the domain. 

At the top of the solution domain 

P=0 and θ=0 if UZ<0    (2.13) 

Along the side of the solution domain 

P=0 and θ=0 if UR<0    (2.14) 

 

2.3.1 Pre-Processing 

 The solution geometries, blocking, and meshes were created using ANSYS ICEM CFD 

11.0. Due to the geometric and thermal axisymmetry and the need to minimize computational 

resources, the geometries consist of a 1° section of the total solution domain. 

In order to create a hexahedral mesh, the curves of the geometry must be associated to the 

edges of blocks using a method known as blocking. The surfaces formed by these edges were 

given common names to aid in identifying fluid boundaries during pre-processing. The edges of 

these blocks were then divided into hexahedral mesh volumes concentrating the most nodes in 

the areas of interest. A hexahedral unstructured mesh is outputted using the parameters defined 

in the block file.  

ANSYS CFX-Pre is the physics-definition pre-processor for ANSYS CFX. The 

hexahedral unstructured mesh file is imported into ANSYS CFX-Pre in order to define the fluid 
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properties, flow characteristics, and boundary conditions. Once all properties and boundary 

conditions have been defined, a definition file containing all the necessary information to run the 

simulation is outputted.  

 
2.3.2 Solution 

ANSYS CFX 12.0, a finite-volume-based computational fluid dynamics solver, was used 

to perform the numerical experiments. Unlike the classical methods of using the integral method, 

solving for the boundary layer equations, using semi-empirical analysis, and/or perturbation 

techniques, ANSYS CFX 12.0 solves for the full conservation of mass, momentum, and energy 

equations. Furthermore, in the numerical approach here, solution domain boundaries are 

extended further out minimizing boundary condition assumptions in the area of the flow (i.e. the 

plume at the top of the cylinder is allowed to grow, whereas in the classical solutions, the 

boundary is cut-off at the top of the cylinder). 

The number of nodes used was 210,000. Mesh independence was established by 

multiplying the number of nodes by two. The average Nusselt numbers of the two meshes varied 

by less than 0.3%.The boundaries of the solution domain were placed far enough away as to not 

affect the solution of the area of interest, in this case, the heat transfer at the cylinder. In addition, 

the height and width of the solution domain were varied and tested. 

 

2.3.3 Post Processing 

The result files of the simulations were analyzed in ANSYS CFX-Post. Using the 

ANSYS CFX-Post Function Calculator, average wall heat flux values were extracted from the 

surfaces of the cylinder in order to calculate the average convective heat transfer coefficient, h�. 

With an average convective heat transfer coefficient, the Nusselt number, NuL, can be calculated.   
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CHAPTER 3  

ADIABATIC TOP 

Results will now be presented to compare the current work to other classical solutions for 

laminar natural convection from an isothermal cylinder with an adiabatic top. 

 

Fig. 3.1 Insulated Top Average Nusselt Number versus Rayleigh Number for AR = 0.1. 
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Fig. 3.2 Insulated Top Average Nusselt Number versus Rayleigh Number for AR = 0.125.
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Fig. 3.3 Insulated Top Average Nusselt Number versus Rayleigh Number for AR = 0.2.
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Fig. 3.4 Insulated Top Average Nusselt Number versus Rayleigh Number for AR = 0.5.
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Fig. 3.5 Insulated Top Average Nusselt Number versus Rayleigh Number for AR = 1.
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Fig. 3.6 Insulated Top Average Nusselt Number versus Rayleigh Number for AR = 2.
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Fig. 3.7 Insulated Top Average Nusselt Number versus Rayleigh Number for AR = 5.
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Fig. 3.8 Insulated Top Average Nusselt Number versus Rayleigh Number for AR = 8.
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Fig. 3.9 Insulated Top Average Nusselt Number versus Rayleigh Number for AR = 10. 

 

Figures 3.1-3.9 have been prepared to show the average Nusselt numbers versus Rayleigh 

number for several different aspect ratios. The current numerical experiments (Present) are 

compared with previous work by LeFevre and Ede [7, 8] -Eq. (1.3), Cebeci [9] - Eq. (1.4), 

Minkowycz and Sparrow [12], Lee et al. [13] - Eqs. (1.6-1.9), Popiel [10] - Eqs. (1.10-1.13), and 

the isothermal laminar vertical flat plate correlation from Churchill and Chu [11] - Eq. (1.5). 

Furthermore, the present data has been correlated into an equations for Pr = 0.7 and plotted in the 

figures. The resulting correlation was developed using the MATLAB surface fitting tool using a 
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non-linear least squares method with a LAR robust algorithm and are presented below. The R-

squared value was 0.9999. 

For 0.1 ≤ AR ≤ 1 

NuL=-0.2165+0.5204RaL
1 4⁄ +0.8473 �L

D
�   (3.1) 

For 2 ≤ AR ≤ 10 

NuL=-0.0.6211+0.54414RaL
1 4⁄ +0.6123 �L

D
�   (3.2) 

The applicability limits of vertical flat-plate solution as an approximation of the average 

heat transfer coefficient for an isothermal vertical cylinder are shown in Figs. 2 - 6 by solid 

vertical black line (for Figs. 7 - 10 the limits are located at RaL greater than those of interest). 

These figures include the range proposed by Sparrow and Gregg [6] (Eq. 1.1)) (within 5% of 

flat-plate) and the more conservative estimate provided by Popiel using the data of Cebeci [9, 10] 

(Eq. 1.10)) (within 3% of flat-plate) . 

As the Rayleigh number increases, all solutions asymptotically approach the flat-plate 

solution. As the aspect ratio increases, the cut-off Rayleigh number for which the flat-plate 

solution can be used to approximate the Nusselt number increases. 

For AR = 0.1, Sparrow and Gregg claim that the flat-plate solution can be used to 

approximate Nusselt numbers for RaL greater than 100. However, upon inspection of Fig. 2, the 

present solution deviates from that of the flat plate by as much as32%. Furthermore, the present 

solution deviates from that of Minkowycz and Sparrow (virtually the exact same results as 

Cebeci) by upwards of 36%. It is interesting to note, that the solutions of LeFevre and Ede were 

determined using an integral method, yet the deviation from that solution and the present 

solution is approximately 13%. Furthermore, the solutions of Lee et al. are very close to that of 
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LeFevre and Ede. Extrapolation of results for AR = 0.1 places the limit at RaL≈ 105 for5% 

deviation from the flat plate. 

Figures 3 - 6 present similar stories. The present data is closer to that of LeFevre and Ede 

than it is to Minkowycz and Sparrow (Cebeci); and the higher the aspect ratio, the closer the 

present solution is to LeFevre and Ede. Also observed is that the higher the aspect ratio, the 

closer the present solution (and LeFevre and Ede) approaches that of the flat-plate solution in 

this range of aspect ratios (0.1 ≤ AR ≤ 1). Interestingly, the reverse trend is seen in the data of 

Minkowycz and Sparrow(Cebeci)- as the aspect ratio increases, the data gets farther away from 

the flat-plate solution, which is evidenced by the approximation line increasing in Rayleigh 

number. At one end of the spectrum, AR = 0.1, the Sparrow and Gregg limit is too liberal (and 

not accurate) in predicting when to use the flat-plate solution to approximate the heat transfer 

from the curved side, and when AR = 1, the Sparrow and Gregg limit is far too conservative in 

determining when to the flat-plate solution is appropriate. 

For AR = 0.125, the limit placed at RaL≈105 for 6% deviation from the flat plate. 

Extrapolating, for AR = 0.2, Nusselt numbers deviate approximately 5% at RaL≈ 105. For AR = 

0.5 and AR = 1, the limit can be placed at RaL≈105 and RaL≈103 for 4% and 6% deviations, 

respectively. 

Next, attention will be turned to Figs. 7 - 10. In this group of aspect ratios (which are 

representing more tall, slender cylinders: 2 ≤ AR ≤ 10), there is no question that any of the 

solutions can be approximated using the flat plate. Here, the results of LeFevre and Ede and Lee 

et al. differ slightly more, with the present solution found in between these two. For AR= 2, the 

present results differ from Minkowycz and Sparrow (Cebeci) by as much as 34%. As the aspect 

ratios increase, the percent difference between all of the solutions decreases. As an aside, for AR 
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= 8 and 10, the lower Rayleigh numbers are out of the range of curvature parameters for which 

the Minkowycz and Sparrow (Cebeci) solutions are valid (0 <ξ< 10)and are therefore not plotted. 

It is of particular interest to note that in many heat transfer textbooks, including [1–3], 

after being instructed to determine whether curvature effects are important using Eq. (1.1), the 

reader is directed to use the results of [6], [9], and/or [12], which are the results from Sparrow 

and Minkowycz and Cebeci. 
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CHAPTER 4  

HEATED TOP 

As was mentioned in the Chapter 1, very little work has been presented on natural 

convection from vertical cylinders with heated tops. Oosthuizen [19] included in his work the 

case of an isothermal cylinder situated upright on an adiabatic base with a heated top (like the 

present). Oosthuizen’s experimental data includes only 11 data points, two of which fall under 

the same aspect ratios simulated here AR = 1 and 2. Eslami and Jafarpur [20] presented the case 

of an isothermal cylinder with both ends (top and bottom) active. The current authors used the 

generalized equations presented in [20] to determine the average Nusselt numbers for an 

isothermal cylinder with only the side and top heated and have included this data with the present 

results (details in the Chapter 1). 

Similar to the adiabatic case, the present data was correlated using the same method and 

plotted using the following equations. 

For 0.1 ≤ AR ≤ 0.2 

NuL=-0.2823+0.2657RaL
1 4⁄ +3.657 �L

D
�   (4.1) 

For AR = 0.5 

NuL=-128.3+0.3692RaL
1 4⁄ +64.7 �L

D
�    (4.2) 

For AR = 1 

NuL=-0.1557+0.4718RaL
1 4⁄ +0.315 �L

D
�   (4.3) 

For 0.1 ≤ AR ≤ 0.2 

NuL=-0.3903+0.5399RaL
1 4⁄ +0.6367 �L

D
�   (4.4) 
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 Figures 4.1 – 4.9 show present results for both the adiabatic- and heated-top cases for 

varying Rayleigh numbers and aspect ratios. Furthermore, results using the technique of Eslami 

and Jafarpur are plotted(except for AR = 10 since that fell out of the range of applicability of the 

equations). Furthermore, the two experimental data points of Oosthuizen are plotted for AR = 1 

and 2 in Figs. 4.5 and 4.6. 

Fig. 4.1 Comparison of Average Nusselt Number versus Rayleigh Number for AR = 0.1.
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Fig. 4.2 Comparison of Average Nusselt Number versus Rayleigh Number for AR = 0.125.
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Fig. 4.3 Comparison of Average Nusselt Number versus Rayleigh Number for AR = 0.2. 
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Fig. 4.4 Comparison of Average Nusselt Number versus Rayleigh Number for AR = 0.5.
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Fig. 4.5 Comparison of Average Nusselt Number versus Rayleigh Number for AR = 1.
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Fig. 4.6 Comparison of Average Nusselt Number versus Rayleigh Number for AR = 2.

33 



Fig. 4.7 Comparison of Average Nusselt Number versus Rayleigh Number for AR = 5.
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Fig. 4.8 Comparison of Average Nusselt Number versus Rayleigh Number for AR = 8.
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Fig. 4.9 Comparison of Average Nusselt Number versus Rayleigh Number for AR = 10. 

Like Oosthuizen reported, the average Nusselt numbers for the heated top are lower than 

that for the adiabatic top Solutions from Eslami and Jafarpur fell between the adiabatic- and 

heated-top cases for the lower aspect ratios (AR ≤ 0.2)and lined up with the insulated-top case 

for AR ≥ 0.5. The Eslami and Jafarpur solutions deviated at low values of the Rayleigh number, 

perhaps suggesting a Rayleigh-number limit for their solution. The Oosthuizen data points 

appear to be outliers on the graphs with an approximately 40% deviation for AR = 1 and 5% 

deviation for AR = 2. 
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The percent difference between the insulated-top case and the heated-top case remains 

relatively constant for all values of the Rayleigh numbers for a given aspect ratio, and as the 

aspect ratio increase, the percent difference decreases. For an AR = 0.1, the percent difference 

between the two is around 40%, for AR = 1, the difference is 10%, and for AR = 10, the percent 

difference is on the order of 1%. Nusselt numbers for heated-top cylinders with aspect ratios 

greater than 2 can be approximated using the adiabatic-top solution to within 5%. 
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CHAPTER 5  

CONCLUSION 

In the present study, numerical experiments have been performed to interrogate the 

average natural convection Nusselt numbers for laminar isothermal vertical cylinders situated on 

an adiabatic surface in a quiescent ambient environment for Pr= 0.7, 102< RaL< 109, and 0.1 < 

L/D < 10. The case where the cylinder has an adiabatic top was compared to several other 

classical solutions, which are found in or referenced by commonly used heat transfer textbooks, 

as well as other solutions less cited. It was found that the classical solutions (Minkowycz and 

Sparrow, Cebeci) were not always in agreement with the present solution and other less-cited or 

referenced vertical cylinder solutions (LeFevre and Ede, Lee et al.). Furthermore, the limit for 

which the average Nusselt numbers for the flat-plate solution may be used as an approximation 

for the vertical cylinder (which, again, is referenced in all commonly used heat transfer 

textbooks) was, in some cases, too liberal, and in others, too conservative. A new average 

Nusselt number correlation was developed and a new guideline for Rayleigh-number limits for 

using the flat-plate approximation for each of the aspect ratios was discussed. 

The case where the cylinder has a heated top has received less attention. Results from the 

present study show that the average Nusselt numbers for the heated top are less than that for the 

adiabatic top. Results are compared with known investigations (including a very recent study), 

but they are not in good agreement. Further analytical and experimental data is needed. 

  

38 



REFERENCES 

[1]  Incropera, F. P., Dewitt, D. P., Bergman, T. L., and Lavine, A. S., 2007. Introduction to 
Heat Transfer 5th Ed. John Wiley & Sons, Inc., Hoboken, NJ. 

[2]  Incropera, F. P., Dewitt, D. P., Bergman, T. L., and Lavine, A. S., 2007. Fundamentals of 
Heat and Mass Transfer 6th Ed. John Wiley & Sons, Inc., Hoboken, NJ. 

[3]  Holman, J. P., 2010. Heat Transfer 10th Ed. Mc-Graw-Hill Companies, Inc., New York, 
NY. 

[4]  Burmeister, L., 1993. Convective Heat Transfer 2nd Ed. John Wiley & Sons, In, New 
York, NY. 

[5]  Gebhart, B., Jaluria, Y., Mahajan, R. L., and Sammakia, B., 1988. Buoyancy Induced 
Flows and Transport: Reference Edition. Hemisphere Publishing Company, New York, 
NY. 

[6]  Sparrow, E. M., and Gregg, J. L., 1956. “Laminar-free-convection heat transfer from the 
outer surface of a vertical circular cylinder”. Transactions of the ASME, 78, pp. 1823–
1829. 

[7]  LeFevre, E. J., and Ede, A. J., 1956. “Laminar free convection from the outer surface of a 
vertical cylinder”. In Proceedings of the 9th International Congress on Applied 
Mechanics, pp. 175–183. 

[8]  Ede, A. J., 1967. Advances in Heat Transfer. ch. Advances in Free Convection, pp. 1–64. 

[9]  Cebeci, T., 1974. “Laminar-free-convective-heat transfer from the outer surface of a 
vertical circular cylinder”. In Proceedings of the 5th International Heat Transfer 
Conference, Tokyo, pp. 1–64. 

[10]  Popiel, C. O., 2008. “Free convection heat transfer from vertical slender cylinders: A 
review”. Heat Transfer Engineering,29, pp. 521–536. 

[11]  Churchill, S. W., and Chu, H. H. S., 1975. “Correlating equations for laminar and 
turbulent free convection from a vertical plate”. International Journal of Heat and Mass 
Transfer, 18, pp. 1323–1329. 

[12]  Minkowycz, W. J., and Sparrow, E. M., 1974. “Local non similar solutions for natural 
convection on a vertical cylinder ”.Journal of Heat Transfer, 96, pp. 178–183. 

[13]  Lee, H. R., Chen, T. S., and Armaly, B. F., 1988. “Natural convection along slender 
vertical cylinders with variable surface temperature”. Journal of Heat Transfer, 110, pp. 
103–108. 

39 



[14]  Fujii, T., and Uehara, H., 1970. “Laminar natural-convective heat transfer from the 
outside of a vertical cylinder”. International Journal of Heat and Mass Transfer, 13, pp. 
607–615. 

[15]  Munoz-Cobo, J. L., Cover´an, J. M., and Chiva, S., 2003. “Explicit formulas for laminar 
natural convection heat transfer along vertical cylinders with power-law wall temperature 
distributions”. Heat and Mass Transfer, 39, pp. 215–222. 

[16] Kimura, F., Tachibana, T., Kitamura, K., and Hosokawa, T., 2004. “Fluid flow and heat 
transfer of natural convection around heated vertical cylinders (effect of cylinder 
diameter)”. JSME International Journal Series B, 47, pp. 159–161. 

[17]  Popiel, C. O., Wojtkowiak, J., and Bober, K., 2007. “Laminar free convective heat 
transfer from isothermal vertical slender cylinders”. Experimental Thermal and Fluid 
Science, 32, pp. 607–613. 

[18]  Gori, F., Serrano, M. G., and Wang, Y., 2006. “Natural convection along a vertical thin 
cylinder with uniform and constant wall heat flux”. International Journal of 
Thermophysics, 27, pp. 1527–1538. 

[19]  Oosthuizen, P. H., 5. “Free convective heat transfer from vertical cylinders with exposed 
ends”. Transactions of the Canadian Society for Mechanical Engineering, 1978-1979, pp. 
231–234. 

[20]  Eslami, M., and Jafarpur, K., 2011. “Laminar natural convection heat transfer from 
isothermal vertical cylinders with active ends”. Heat Transfer Engineering, 32, pp. 506–
513. 

[21]  Yovanovich, M. M., 1987. “On the effect of shape, aspect ratio and orientation upon 
natural convection from isothermal bodies of complex shape”. ASME HTD, 82, pp. 121–
129. 

[22]  Lee, S., Yovanovich, M. M., and Jafarpur, K., 1991. “Effects of geometry and orientation 
on laminar natural convection from isothermal bodies”. Journal of Thermophysics and 
Heat Transfer, 5, pp. 2208–216. 

[23]  Churchill, S., and Churchill, R., 1975. “A comprehensive correlating equation for heat 
and component transfer by free convection”. AICHE Journal, 21, pp. 604–606. 

[24]  Yovanovich, M., 1987. “New nusselt and sherwood numbers for arbitrary isopotential 
geometries at near zero pecletand rayleigh numbers”. In Proceedings of the 22nd 
Thermophysics Conference, AIAA, Honolulu, HI, USA. 

[25] Zanotti, C., P. Giuliani, S. Arnaboldi, and A. Tuissi, 2011. “ Analysis of wire position 
and operating conditions on Functioning of NiTi Wires for Shape Memory Actuators”. 
Journal of Materials Engineering and Performance, 20, pp. 688-696. 

40 


	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	CHAPTER 1  INTRODUCTION
	1.1 Introduction
	1.2  Nomenclature
	1.3 Flat Plate Approximation
	1.4  Integral Method
	1.5 Boundary Layer Approximation Method
	1.6 Similarity Solution Method
	1.7 Experiments on Natural Convection from an Isothermal Vertical Cylinder

	CHAPTER 2  PROBLEM FORMULATION
	2.1 Physical Model and Solution Domain
	2.2 Governing Equations
	2.3 Boundary Conditions
	2.3.1 Pre-Processing
	2.3.2 Solution
	2.3.3 Post Processing


	CHAPTER 3  ADIABATIC TOP
	CHAPTER 4  HEATED TOP
	CHAPTER 5  CONCLUSION
	REFERENCES

