Studies on Plant-aphid Interactions: a Novel Role for Trehalose Metabolism in Arabidopsis Defense Against Green Peach Aphid

Description:

Myzus persicae (Sülzer), commonly known as the green peach aphid (GPA), is a polyphagous insect that can infest over 100 families of economically important plants and is major pest for vegetable crops. This study utilizes the Arabidopsis-GPA model system with the aim to elucidate the role of the plant disaccharide trehalose in providing defense against GPA. This study demonstrates a novel role for TPS11 in providing defense against GPA. TPS11 expression was found to be transiently induced in Arabidopsis plants in response to GPA infestation and the TPS11 gene was required for curtailing GPA infestation. TPS11, which encodes for trehalose phosphate synthase and phosphatase activities, contributes to the transient increase in trehalose in the GPA infested tissues. This work suggests that TPS11-dependent trehalose has a signaling function in plant defense against GPA. in addition, trehalose also has a more direct role in curtailing GPA infestation on Arabidopsis. This work also shows that TPS11 is able to modulate both carbohydrate metabolism and plant defenses in response to GPA infestation. the expression of PAD4, an Arabidopsis gene required for phloem-based defenses against GPA, was found to be delayed in GPA infested tps11 mutant plants along with increased sucrose levels and lower starch levels as compared to the GPA infested wild type plants. This work provides clear evidence that starch metabolism in Arabidopsis is altered in response to GPA feeding and that TPS11-modulated increase in starch contributes to the curtailment of GPA infestation in Arabidopsis.

Creator(s): Singh, Vijay
Creation Date: May 2012
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 496
Past 30 days: 13
Yesterday: 0
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Publisher Info: www.unt.edu
Place of Publication: Denton, Texas
Date(s):
  • Creation: May 2012
Description:

Myzus persicae (Sülzer), commonly known as the green peach aphid (GPA), is a polyphagous insect that can infest over 100 families of economically important plants and is major pest for vegetable crops. This study utilizes the Arabidopsis-GPA model system with the aim to elucidate the role of the plant disaccharide trehalose in providing defense against GPA. This study demonstrates a novel role for TPS11 in providing defense against GPA. TPS11 expression was found to be transiently induced in Arabidopsis plants in response to GPA infestation and the TPS11 gene was required for curtailing GPA infestation. TPS11, which encodes for trehalose phosphate synthase and phosphatase activities, contributes to the transient increase in trehalose in the GPA infested tissues. This work suggests that TPS11-dependent trehalose has a signaling function in plant defense against GPA. in addition, trehalose also has a more direct role in curtailing GPA infestation on Arabidopsis. This work also shows that TPS11 is able to modulate both carbohydrate metabolism and plant defenses in response to GPA infestation. the expression of PAD4, an Arabidopsis gene required for phloem-based defenses against GPA, was found to be delayed in GPA infested tps11 mutant plants along with increased sucrose levels and lower starch levels as compared to the GPA infested wild type plants. This work provides clear evidence that starch metabolism in Arabidopsis is altered in response to GPA feeding and that TPS11-modulated increase in starch contributes to the curtailment of GPA infestation in Arabidopsis.

Degree:
Discipline: Molecular Biology
Level: Doctoral
PublicationType: Disse
Language(s):
Subject(s):
Keyword(s): Trehalose | Arabidopsis | green peach aphid
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • ARK: ark:/67531/metadc115159
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Public
Holder: Singh, Vijay
License: Copyright
Statement: Copyright is held by the author, unless otherwise noted. All rights Reserved.