9-Lipoxygenase Oxylipin Pathway in Plant Response to Biotic Stress

Access: Use of this item is restricted to the UNT Community
Description:

The activity of plant 9-lipoxygenases (LOXs) influences the outcome of Arabidopsis thaliana interaction with pathogen and insects. Evidence provided here indicates that in Arabidopsis, 9-LOXs facilitate infestation by Myzus persicae, commonly known as the green peach aphid (GPA), a sap-sucking insect, and infection by the fungal pathogen Fusarium graminearum. in comparison to the wild-type plant, lox5 mutants, which are deficient in a 9-lipoxygenase, GPA population was smaller and the insect spent less time feeding from sieve elements and xylem, thus resulting in reduced water content and fecundity of GPA. LOX5 expression is induced rapidly in roots of GPA-infested plants. This increase in LOX5 expression is paralleled by an increase in LOX5-synthesized oxylipins in the root and petiole exudates of GPA-infested plants. Micrografting experiments demonstrated that GPA population size was smaller on plants in which the roots were of the lox5 mutant genotype. Exogenous treatment of lox5 mutant roots with 9-hydroxyoctadecanoic acid restored water content and population size of GPA on lox5 mutants. Together, these results suggest that LOX5 genotype in roots is critical for facilitating insect infestation of Arabidopsis. in Arabidopsis, 9-LOX function is also required for facilitating infection by F. graminearum, which is a leading cause of Fusarium head blight (FHB) disease in wheat and other small grain crops. Loss of LOX1 and LOX5 function resulted in enhanced resistance to F. graminearum infection. Similarly in wheat, RNA interference mediated silencing of the 9-LOX homolog TaLpx1, resulted in enhanced resistance to F. graminearum. Experiments in Arabidopsis indicate that 9-LOXs promote susceptibility to this fungus by suppressing the activation of salicylic acid-mediated defense responses that are important for basal resistance to this fungus. the lox1 and lox5 mutants were also compromised for systemic acquired resistance (SAR), an inducible defense mechanism that is systemically activated throughout a plant in response to a localized infection. the lox1 and lox5 mutants exhibited reduced cell death and delayed hypersensitive response when challenged with an avirulent strain of the bacterial pathogen Pseudomonas syringae pv tomato. LOX1 and LOX5 functions were further required for the synthesis as well as perception of a SAR-inducing activity present in petiole exudates collected from wild-type avirulent pathogen-challenged leaves. Taken together, results presented here demonstrate that 9-LOX contribute to host susceptibility as well as defense against different biotic stressors.

Creator(s): Nalam, Vamsi J.
Creation Date: May 2012
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 324
Past 30 days: 16
Yesterday: 0
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Publisher Info: www.unt.edu
Place of Publication: Denton, Texas
Date(s):
  • Creation: May 2012
Description:

The activity of plant 9-lipoxygenases (LOXs) influences the outcome of Arabidopsis thaliana interaction with pathogen and insects. Evidence provided here indicates that in Arabidopsis, 9-LOXs facilitate infestation by Myzus persicae, commonly known as the green peach aphid (GPA), a sap-sucking insect, and infection by the fungal pathogen Fusarium graminearum. in comparison to the wild-type plant, lox5 mutants, which are deficient in a 9-lipoxygenase, GPA population was smaller and the insect spent less time feeding from sieve elements and xylem, thus resulting in reduced water content and fecundity of GPA. LOX5 expression is induced rapidly in roots of GPA-infested plants. This increase in LOX5 expression is paralleled by an increase in LOX5-synthesized oxylipins in the root and petiole exudates of GPA-infested plants. Micrografting experiments demonstrated that GPA population size was smaller on plants in which the roots were of the lox5 mutant genotype. Exogenous treatment of lox5 mutant roots with 9-hydroxyoctadecanoic acid restored water content and population size of GPA on lox5 mutants. Together, these results suggest that LOX5 genotype in roots is critical for facilitating insect infestation of Arabidopsis. in Arabidopsis, 9-LOX function is also required for facilitating infection by F. graminearum, which is a leading cause of Fusarium head blight (FHB) disease in wheat and other small grain crops. Loss of LOX1 and LOX5 function resulted in enhanced resistance to F. graminearum infection. Similarly in wheat, RNA interference mediated silencing of the 9-LOX homolog TaLpx1, resulted in enhanced resistance to F. graminearum. Experiments in Arabidopsis indicate that 9-LOXs promote susceptibility to this fungus by suppressing the activation of salicylic acid-mediated defense responses that are important for basal resistance to this fungus. the lox1 and lox5 mutants were also compromised for systemic acquired resistance (SAR), an inducible defense mechanism that is systemically activated throughout a plant in response to a localized infection. the lox1 and lox5 mutants exhibited reduced cell death and delayed hypersensitive response when challenged with an avirulent strain of the bacterial pathogen Pseudomonas syringae pv tomato. LOX1 and LOX5 functions were further required for the synthesis as well as perception of a SAR-inducing activity present in petiole exudates collected from wild-type avirulent pathogen-challenged leaves. Taken together, results presented here demonstrate that 9-LOX contribute to host susceptibility as well as defense against different biotic stressors.

Degree:
Discipline: Molecular Biology
Level: Doctoral
PublicationType: Disse
Language(s):
Subject(s):
Keyword(s): LOX5 | 9-lipoxygenase | green peach aphid | Fusarium
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • ARK: ark:/67531/metadc115127
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Use restricted to UNT Community
Holder: Nalam, Vamsi J.
License: Copyright
Statement: Copyright is held by the author, unless otherwise noted. All rights Reserved.