Incorporating Electrochemistry and X-ray Diffraction Experiments Into an Undergraduate Instrumental Analysis Course

PDF Version Also Available for Download.

Description

Experiments were designed for an undergraduate instrumental analysis laboratory course, two in X-ray diffraction and two in electrochemistry. Those techniques were chosen due their underrepresentation in the Journal of Chemical Education. Paint samples (experiment 1) and pennies (experiment 2) were characterized using x-ray diffraction to teach students how to identify different metals and compounds in a sample. in the third experiment, copper from a penny was used to perform stripping analyses at different deposition times. As the deposition time increases, the current of the stripping peak also increases. the area under the stripping peak gives the number of coulombs passed, … continued below

Creation Information

Molina, Cathy May 2012.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 716 times, with 6 in the last month. More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Author

Chair

Committee Member

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Molina, Cathy

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Experiments were designed for an undergraduate instrumental analysis laboratory course, two in X-ray diffraction and two in electrochemistry. Those techniques were chosen due their underrepresentation in the Journal of Chemical Education. Paint samples (experiment 1) and pennies (experiment 2) were characterized using x-ray diffraction to teach students how to identify different metals and compounds in a sample. in the third experiment, copper from a penny was used to perform stripping analyses at different deposition times. As the deposition time increases, the current of the stripping peak also increases. the area under the stripping peak gives the number of coulombs passed, which allows students to calculate the mass of copper deposited on the electrode surface. the fourth experiment was on the effects of variable scan rates on a chemical system. This type of experiment gives valuable mechanistic information about the chemical system being studied.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 2012

Added to The UNT Digital Library

  • Nov. 6, 2012, 3:03 p.m.

Description Last Updated

  • April 28, 2020, 12:59 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 6
Total Uses: 716

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Molina, Cathy. Incorporating Electrochemistry and X-ray Diffraction Experiments Into an Undergraduate Instrumental Analysis Course, thesis, May 2012; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc115123/: accessed April 24, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen