A Driver, Vehicle and Road Safety System Using Smartphones

Access: Use of this item is restricted to the UNT Community
Description:

As vehicle manufacturers continue to increase their emphasis on safety with advanced driver assistance systems (ADAS), I propose a ubiquitous device that is able to analyze and advise on safety conditions. Mobile smartphones are increasing in popularity among younger generations with an estimated 64% of 25-34 year olds already using one in their daily lives. with over 10 million car accidents reported in the United States each year, car manufacturers have shifted their focus of a passive approach (airbags) to more active by adding features associated with ADAS (lane departure warnings). However, vehicles manufactured with these sensors are not economically priced while older vehicles might only have passive safety features. Given its accessibility and portability, I target a mobile smartphone as a device to compliment ADAS that can bring a driver assist to any vehicle without regards for any on-vehicle communication system requirements. I use the 3-axis accelerometer of multiple Android based smartphone to record and analyze various safety factors which can influence a driver while operating a vehicle. These influences with respect to the driver, vehicle and road are lane change maneuvers, vehicular comfort and road conditions. Each factor could potentially be hazardous to the health of the driver, neighboring public, and automobile and is therefore analyzed thoroughly achieving 85.60% and 89.89% classification accuracy for identifying road anomalies and lane changes, respectively. Effective use of this data can educate a potentially dangerous driver on how to operate a vehicle safely and efficiently. with real time analysis and auditory alerts of these factors, I hope to increase a driver's overall awareness to maximize safety.

Creator(s): Gozick, Brandon
Creation Date: May 2012
Partner(s):
UNT Libraries
Collection(s):
UNT Theses and Dissertations
Usage:
Total Uses: 205
Past 30 days: 19
Yesterday: 1
Creator (Author):
Publisher Info:
Publisher Name: University of North Texas
Publisher Info: www.unt.edu
Place of Publication: Denton, Texas
Date(s):
  • Creation: May 2012
Description:

As vehicle manufacturers continue to increase their emphasis on safety with advanced driver assistance systems (ADAS), I propose a ubiquitous device that is able to analyze and advise on safety conditions. Mobile smartphones are increasing in popularity among younger generations with an estimated 64% of 25-34 year olds already using one in their daily lives. with over 10 million car accidents reported in the United States each year, car manufacturers have shifted their focus of a passive approach (airbags) to more active by adding features associated with ADAS (lane departure warnings). However, vehicles manufactured with these sensors are not economically priced while older vehicles might only have passive safety features. Given its accessibility and portability, I target a mobile smartphone as a device to compliment ADAS that can bring a driver assist to any vehicle without regards for any on-vehicle communication system requirements. I use the 3-axis accelerometer of multiple Android based smartphone to record and analyze various safety factors which can influence a driver while operating a vehicle. These influences with respect to the driver, vehicle and road are lane change maneuvers, vehicular comfort and road conditions. Each factor could potentially be hazardous to the health of the driver, neighboring public, and automobile and is therefore analyzed thoroughly achieving 85.60% and 89.89% classification accuracy for identifying road anomalies and lane changes, respectively. Effective use of this data can educate a potentially dangerous driver on how to operate a vehicle safely and efficiently. with real time analysis and auditory alerts of these factors, I hope to increase a driver's overall awareness to maximize safety.

Degree:
Level: Master's
PublicationType: Thesi
Language(s):
Subject(s):
Keyword(s): Transportation | safety sensors mobile phone
Contributor(s):
Partner:
UNT Libraries
Collection:
UNT Theses and Dissertations
Identifier:
  • ARK: ark:/67531/metadc115086
Resource Type: Thesis or Dissertation
Format: Text
Rights:
Access: Use restricted to UNT Community
Holder: Gozick, Brandon
License: Copyright
Statement: Copyright is held by the author, unless otherwise noted. All rights Reserved.